US009411654B2

a2z United States Patent (10) Patent No.: US 9,411,654 B2
Graham et al. (45) Date of Patent: Aug. 9, 2016
(54) MANAGING CONFIGURATION AND 7,743,189 B2 6/2010 Brown et al.
OPERATION OF AN ADAPTER AS A 7,873,068 B2 1/2011 Klinglesmith et al.
VIRTUAL PERIPHERAL COMPONENT T99 Bl F5011 Damemearetal
INTERCONNECT ROOT TO EXPANSION 2003/0217168 Al* 11/2003 Adachi ..ococooc..... HO4L 29/06
READ-ONLY MEMORY EMULATION 709/229
2004/0181625 Al 9/2004 A_rmstrong et al.
(75) Inventors: Charles S. Graham, Rochester, MN %882;8%;3‘;‘2‘2 i} 12%882 IE}lln et al£ .
. : aser et al.
(US); Gregory M. Nordstrom, Pine 2006/0253619 Al* 11/2006 Torudbakken etal. 710/31
Island, MN (US); John R. Oberly, 111, 2007/0011491 Al 1/2007 Govindarajan et al.
Rochester, MN (US) 2008/0147898 Al 6/2008 Freimuth et al.
2008/0168461 Al 7/2008 Arndt et al.
(73) Assignee: INTERNATIONAL BUSINESS 5882; 8% ;g%ﬁg :} 13@882 xngt et a{
ndt et al.
rACII;IkIhII\IIE; %(S)RPORATION’ 2009/0089464 Al 4/2009 Lach et al.
Imonk, (Us) 2009/0144731 Al 6/2009 Brown et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 616 days FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 13/328,671 ™ 200925878 6/2009
OTHER PUBLICATIONS
(22) Filed: Dec. 16, 2011
Intel, Inc.; “PCI-SIG Single Root I/O Virtualization (SRIOV) Sup-
(65) Prior Publication Data port in Intel Virtualization Technology for Connectivity”; www.intel.
US 2013/0159686 A1 Jun. 20, 2013 dk/jp/software ; 2008.
(Continued)
(51) Imnt.ClL
GOG6F 13/14 (2006.01))) .
GO6F 9/50 (2006.01) Prlmary Examiner — Henry Tsai
GOGF 9/455 (2006.01) Assistant Examiner — Juanito Borromeo
(52) US.CL (74) Attorney, Agent, or Firm — Toler Law Group, P.C.
CPC GOGF 9/5077 (2013.01); GOGF 2009/45579
(2013.01) (57) ABSTRACT
(58) Field of Classification Search
CPC oo GOG6F 9/45558; GOGF 2213/0026 A method of managing an adapter includes identifying a
See application file for complete search history. firmware image configured to enable configuration firmware
of'a logical partition, where the firmware image is associated
; an expansion read-only memory (ROM). Access to the firm-
(56) References Cited p y Ty

U.S. PATENT DOCUMENTS

ware image may be enabled by the logical partition, and the
firmware image may be used to control of an operation of the
adapter.

6,035,346 A 3/2000 Chieng et al.
6,330,656 B1 12/2001 Bealkowski et al.
7,120,778 B2* 10/2006 Zimmer 711/202 22 Claims, 16 Drawing Sheets
’/“ 200
206 207 208
1st Logical Partition {LPAR) 2nd LPAR Nth LPAR
220 228 227 228 229
1st VF 2nd VF 3rd VF Nth VF
PF Manager Device Driver Device Driver Device Driver Device Driver
204
Virtualization Access Configuration
Intermadiary Mechanism 279 Wechanism 280
230 232 233 234
. 1st Virtual st Virtual st Virtual
1?;&;?‘ Function Function Function 202
Instance 1 instance 2 Instance N
. 2nd Virtual
2nd Phy_sn:al Furction
Furction I -
234 235 Instance
Hardware O Adapter

US 9,411,654 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2009/0187694 Al
2009/0249300 Al

7/2009 Baba et al.
10/2009 Vainer et al.
2009/0249330 Al 10/2009 Abercrombie et al.
2009/0276551 Al 11/2009 Brown et al.
2009/0276773 Al* 11/2009 Brownetal. 718/1
2009/0276775 Al 11/2009 Brown et al.
2010/0153592 Al 6/2010 Freimuth et al.
2010/0232443 Al 9/2010 Pandey
2010/0251391 Al 9/2010 Adrangi
2010/0290467 Al 11/2010 Eisenhauer et al.
2011/0179413 Al 7/2011 Subramanian et al.
2011/0202702 Al 8/2011 Fan et al.
2012/0089864 Al 4/2012 Tanaka et al.
2012/0096192 Al 4/2012 Tanaka et al.
2012/0151472 Al 6/2012 Koch et al.
2013/0111082 Al 5/2013 Baba et al.
2013/0159572 Al 6/2013 Graham et al.
2013/0160001 Al 6/2013 Graham et al.
2013/0160002 Al 6/2013 Graham et al.

OTHER PUBLICATIONS

Emulex; “Optimizing Virtualized Servers with SR-IOV”;
whitepaper; www.emulex.com/artifacts/885edbe . . . ; 2010.

Red Hat, Inc.; “SR-IOV Performance Advantage: Red Hat Enterprise
Linux 6 improved virtualized database performance over 23 percent,”
A Principled Technologies Test Report; www.principledtechnolo-
gies.com/RedHat; Nov. 2010.

Gaihong Lian et al.; “Research and implementation of heterogeneous
data sharing”; IEEE Intern’l Conference on Computer Mechatronics,
Control & EE(CMCE2010); 2010.

Ben-Ami Yassour et al.; “On the DMA Mapping Problem in Direct
Device Assignment”; SYSTOR 2010 Proceedings of the 3rd Annual
Haifa Experimental Systems Conf; May 2010.

Charles S. Graham et al., U.S. Appl. No. 13/328,535 entitled “Man-
aging Configuration and System Operations of a Non-Shared Virtual-

ized Input/Output Adapter as Virtual Peripheral Component Inter-
connect Root to Single Function Hierarchies,” filed Dec. 16, 2011.
Charles S. Graham et al., U.S. Appl. No. 13/328,595 entitled “Man-
aging Configuration and System Operations of a Shared Virtualized
Input/Output Adapter as Virtual Peripheral Component Interconnect
Root to Single Function Hierarchies,” filed Dec. 16, 2011.

Charles S. Graham et al., U.S. Appl. No. 13/328,640 entitled “Man-
aging Configuration and System Operations of a Non-Shared Virtual-
ized Input/Output Adapter as Virtual Peripheral Component Inter-
connect Root to Multi-Function Hierarchies,” filed Dec. 16, 2011.
International Search Report and Written Opinion of the ISA dated
Dec. 11, 2012—International Application No. PCT/US2012/
059686.

International Search Report dated Dec. 11, 2012, International Appli-
cation No. PCT/US2012/059685, 2 pages.

International Search Report dated Dec. 21, 2012, International Appli-
cation No. PCT/US2012/059684, 2 pages.

International Search Report dated Dec. 7, 2012, International Appli-
cation No. PCT/US2012/059418, 2 pages.

U.S. Appl. No. 13/328,535; Non-Final Office Action dated Mar. 24,
2014; 37 pages.

U.S. Appl. No. 13/328,595, Non-Final Office Action dated Mar. 24,
2014, 26 pages.

U.S. Appl. No. 13/328,640; Non-Final Office Action dated Jun. 3,
2014; 24 pages.

Lowe, S., “What is SR-IOV?” Dec. 2, 2009, accessed at blog.scot-
tlowe.org/2009/12/02/what-is-sr-iov, 9 pages.

U.S. Appl. No. 13/328,535, Final Office Action dated Aug. 14,2014,
27 pages.

U.S. Appl. No. 13/328,595; Final Office Action dated Aug. 8 2014; 22
pages.

U.S. Appl. No. 13/328,595; Non-Final Office Action dated Dec. 11,
2014; 19 pages.

U.S. Appl. No. 13/328,535; Non-Final Office Action dated Dec. 12,
2014; 16 pages.

U.S. Appl. No. 13/328,640; Final Office Action dated Dec. 18, 2014;
13 pages.

* cited by examiner

U.S. Patent Aug. 9,2016 Sheet 1 of 16 US 9,411,654 B2

= 100

i e A ——
1st Applications 118 2o Applications 118 3rd Applications 140 i

1st Middlewars 118 Z2nd Middleware 117 3rd Middlewars 141
1st Operating System 114 2nd Operating System 118 3rd Operating System 142 E
E: E: §
‘ E

st Virtual Server 112 dnad Virtuad Server 113 3rd Virlual Server 143

| Virtual Processors 120 | Virtual Processors 121 | [Virtual Processors 144

Virtual Memory 145 i

l Virtual VO Adapters 124 E Virtual ¥O Adapters 125 ; i Virtual YO Adapters 148 E

| Physical 1O Adapters 148 |1 | | Physical VO Adapters 148 | | Physical /0 Adapters 147 |

Configuration Mechanism 180 Yirtualization infermediary 110

3

|

|

|

| |
|| Viruai Wemory 122 || | [Virtual Memory 123] {
| 2]
|

|

|

|

i

Hardware Sarver 102

1st Board 104 2nd Board 3 "b 3rd Board 106
3 Processors 130 Prooessors | Frocessors 132
H

Memory 133 1 I Memory 43¢ N |l Memory 135 |

|
|
RiBIRIR Uﬁml 1P E
|
!

ninioiol] isiaioisl | iolajaio

§ YO Adapters 138 HO Adapters 137 VO Adapters 138

US 9,411,654 B2

Sheet 2 of 16

Aug. 9,2016

U.S. Patent

FAEA

AR E

BAEDY (O] SIBMDIBE

; SOUBISU] \W%N R0 N
: UCHIOUN - vkm :
: i easAyd puz |
[BriiA puz :
b BOURIBU 7 BUUBISU | SDUBIBUY OO
WO 4 LDNOUN LIOROLN A _su_m_w.k w :
1BALL 1B H
: JBIiA 18 BRI 18 1S, 181 AR IS H
H < H
P opeZ £EL FASA A
TE7 LUBIIBYDSIN BIF WSIUBUOOp flspeuusiy
vonsiniyuon SSIOTY UORSZRNIEA

[

JBAL 9MAS(
A HIN

7~
BEe

W] Ui

IDANC FOIAD
A BIE

IBALIC] BABLT
A/ PUE

IBALIT BOIABD
E7AR g

7
014

HYd] puE

£%E

7
3Z¢

(a7} uonipe oo sy

i

BOZ

A

o
N
P
<
Td

/

L0Z

s

907

refeusy A4

-
077

US 9,411,654 B2

Sheet 3 of 16

Aug. 9,2016

U.S. Patent

(I
i *wwmﬁﬁi O] DIEMGIE
g ALY R Ltk
WO PUZ
, M\ B enugEl] PSSV TI N LOROUN 4
428 ORI S uopoung T LOIBUN 4 {BOSAL PUE
A1t Lol ERA puZ pop] IETMAIS
955 ’ N e
[vy | : e f
L BouRIsU | SOUBIEY) | BoLEsiy . 708
LOIoUN Y LOIOUN S wemoung 1 HOBoUnA
MM& B U 7o LA DUT ars AR HAA SN [BUSAUL 18
MG 381 ZER 4
¥E%
E1AY
: SIBUD A \x osean
Ly p R - BRI AId
RIS SIOESEH0LY ki i mumzmmﬁ "
Grik Oy JOsIApdAY <
7 e ~
20L nLE ang ¥0L
ZE%
wisisAs BIE N san) Jerdepy

Y
S
b

Bupgisdsy ™,
ZLE

WO A D07

U.S. Patent Aug. 9,2016 Sheet 4 of 16 US 9,411,654 B2

S 400

PG Hardware 404 Oparating System(s) 402

PO Device Tree(s) 418
PO Host

Bridge(s) 408 | o l_lal PHBNodeis) 418
Mot Plug Hs) 422
-
410 DPLAR ID(s) 424
BCH Bus Properties 426
B0 Adapter(s) 408 PO Bus Properties 426
i
Function(s) Device Node(s) 420
41 SR I At A B 804
Configuration Space 428 e ;C
i b ?'BTJ li?
Fortie) MVIO & DMA Space 430 Driverts)
WS Y
414 ~ —
ROMBAR/ROM 432
Intsrouptisl 434

Virtualization Intermediary 440

U.S. Patent Aug. 9,2016 Sheet 5 of 16 US 9,411,654 B2

g*“‘““ 500

PO Hardware 504

PCH Host
Bridge(s) 508

s

510
SR-IOV Adapter(s) 508
Operating
PE O et B
Systam(s
516 o1 ystemis) 502
VF VE PCIVE Device
524 sos V77T Driver 532
!
Vi VE 1L | PCIVF Device
526 530 iver 5
Rl sl Diriver 534
Port Part
540 823
— Virtualization
intermediary 512

U.S. Patent Aug. 9,2016 Sheet 6 of 16 US 9,411,654 B2

‘g“” 800

Logieal Partiion(z) 602 .
A Operating System(s) 610 R
§ FO Device Troe(s) 644 §
| PHE Node(s) 840 vPHB Node(s) 648 ,
: Hot Plug 1D(s) 842
§ 91D 6az Hot Plug 1D(s) 850 §
i OPLAR H{Ms) g44 ~ ;
§ : DRLAR ID(s) 852 |
i PCEBus Propertiss 848 R, —
g O Bus Properties 854 i
R i ;
NE: A i)
p{ﬁ Hagh;are{%@_i_m | {1 Device Node(s) 858 i
e PO Host Bridge(s) 814 -
: - & U P Configuration Space 858 !
516 632 3 Py P
L MMIO & DMA Space 880 || 3.1 Deviee
: Physical Function i : Dyiver
- 620 L ROMBAR/ROM 662]88
!
83 !
630 | Virtual Function N Interrupt(s) 664 ;
648 i fy
! , PV
Port | vPHE Node(s) 868 §
24 ; Hot Plug 1D(s) 568 g
: f
SRAOV Adapter(s) 808 § DPLAR 1D(s) 670 ;
(f soovy " f
Physical Funalion {31 PCHBus Propertiss 872 E
818 i §

i {

Vmua;g‘jm““f ! dde ot Device Node(s) 874 ;

1 111 Configuration Space 878 § e
gf'?g L TVMIO & DA Space 678 |l L1 Devics
NMinde ;) WML I § D E E)‘:" or

; ! ROMBAR/ROM 530 i 38

§

i Interrupt(s) 682 P

Virtualization i - . . ;
Inlemediary 808 | T T e T
Configuration Firmwars §12

U.S. Patent

B
Header 710

702

o

By
Firmware
Image 718

B
Header 712

P
Firmware
mage 720

PC
Haader 714

P
Firmwares
image 722

#CH
Header 718

PCI
Firmware
Imags 724

Aug. 9, 2016 Sheet 7 of 16 US 9,411,654 B2
g‘ 700
704 706
PCI Read image ™ =l
Header 726 | 708 Match 1Ds Header 738
™ Modify Header
Pey el VWS Header 750 b B
Firmwarg Firmwars
image 732 - Head Image image 744
No Imags Maich
~T8 gnore mage 752
Read Image
-t NO Iimage Match
lgnore image 754
Yol Read Image B
Header 728 Pl Mo Image Match Header 740
gnors Image 756
PCH o | PCH
Firmwae | Ly B84 mage) Fimware
image g;'s@ No imaga Match Emage :?46
lgnore bnage 758
Read Image
Mateh iDs
¥ Modify Header
Write Header 780
PO PG
Header 730 Read Image Haader 742
Match s
PO 6 e dar PG
Firrmwarg e ij\dﬁy Header sl Frmware
v Write Header 762 N
image 736 Image 748

U.S. Patent Aug. 9,2016 Sheet 8 of 16 US 9,411,654 B2
ygm’ B30
802
- 804
MJ
PFO BARD 828 VF BARCEI0
PFO BAR1T 828
- VF Expansion
PEO BARZ 830 ROM BAR 812
PFO Expansion i
ROMBAR 832 ™
808
VF BARD 814 L
PF1 BARD 824
PE1 BARY 836 VF Expansion
ROM BAR 816
PF1 BAR2 838
FF1 Expansion
w] § % W =]
ROM BAR 840 BO8
oot 1M VF BARD 818 b7
PROVFO BARD 842t 1 1 L 1 U yF Eypansion
PFOVF1 BART 844l ROM BAR 820
— 2" VE RARD 822
PE1VFD BARO B48 e
ROM BAR 824

U.S. Patent Aug. 9,2016 Sheet 9 of 16 US 9,411,654 B2
ﬁg‘“ 900
Lonate PF
"o
5o
Y 908 i a4 02
o J,.-*“’; N
" Another N " SRIOV
™ PE? Supported?
\gw’ w
80 ¥] .
N 2 910 Y1 s40
e | P N e s
Copy Image to Vi Read Vendor 1D | ast ?W\\;}
image?
920 % o1 7
Read Devics ID
Add FW image
818 % ‘i}M
>, v o Add Fw
Create Header el %QQUQ”‘“ {ocate Image
Us efué? \,,.w““ Nt
918 % Image % 936
N _ 4
Use Sequence E ;3 Create
Header
N ,f"“/) ‘v" Fg Use \
Image? P Y %\ §34
\,,w.«-’”'
SI8 é god - "‘y Maich &
vt Bearch i Bearch Suppot "{zy e
for VIF § for PF
Device 1D E Davice D
628~ 930 832
™ Determine | N VAP Locats 1%
Size ?3\(?@’@35: P image
qpac&

U.S. Patent Aug. 9,2016 Sheet 10 of 16 US 9,411,654 B2

g““ 1000

Configure & ¢
Propagate WVF

% 1004
Transfer VF info
to Structure

% 1008
ndicate Unique
Call to Read

%’ 1008
Copy Structure fo |
Logical Partition
L

¥ 1010

ey

intiate Logical
Partition

% 1 C);‘i 2

Detarming Use |-
for Vi's
Expansion ROM

%Y 1014
initiate Unigue 7
Call fo Vi
%’ 1016

Locate Virtuslized
ROM Image

@
o
Gt

U.S. Patent

Aug. 9, 2016
1102
Configure & [
Fropsgsta VF
% 1104
Trarnster VF info 7
o Structurs
% 1106
Crsate Unigue 7
Address o Map
% 1108
Capy Structure to 7
Logical Partition
é 1110
mitiate Logical P
Partition
\% 1112
Deatermine Use Lo
for Vi's
Expansion ROM
% 1114
Initiate Callto 7
Map Address
% 1116
Map Address to
FWimage
% 1118

Read Virtual
ROM bnage

FG. T

Sheet 11 of 16

US 9,411,654 B2

A

U.S. Patent Aug. 9,2016 Sheet 12 of 16 US 9,411,654 B2

o
o

Configure &
Fropagate VE

% 1304
Transfar V¥ info
in Structure

%! 1206
Create Unique
Address to Map
L

3 1208

o
v

Copy Structure 1o
Logical Partition

%‘ 1210

Initiaie Logical {7
Partition

%f j212
Determine Use |
for VF's
Expansion ROM

% i ?*3 4

5

intercept Read &
Return Address

%. 1318

o“"»

Read Address

$ 1218

Inlercept Addrass
& Retun Data

FIG. 12

U.S. Patent Aug. 9,2016 Sheet 13 of 16 US 9,411,654 B2

Configurs &
Propagats VF

%‘ 1304

Transfer VF Info
to Structure

% 1306

Create Uniqus
Address to Map

%’ 1 iEGS

Copy Structurs ta
Logical Partition

%‘ 1 %3 it

o

nttiate Logical
Partition

%’ 1312
Daterming Use L

for V's
Expansion ROM

% 1314

-
o
-

intercept Read & |
Retum Addrass

% 1316

Map ROM BAR 7
addrass © LPAR

o

frtercept Address 7
& Retum Dala

U.S. Patent

1403

Aug. 9,2016

Sheet 14 of 16

1414

Allooats
Meamory
Structures

!

Locats
Phiysical
Funotion

A

1406 %’

e
cd
o

1410

o
\;y'j
p

¥
&
yﬁw
. SR--R:V’\\ N i\mtijer
= Supdaorted? 7 - Physical
e [R3 ST i . !
\\\} ‘ Funtion?
.-«""‘F f‘«"’
_ P
o)

SN

b

1408

N

Head ROM
Size & Map
BAR

1412

o

Copy PO
Addrass &
ROM Size

i

FiG. 14

US 9,411,654 B2

FRat

U.S. Patent Aug. 9,2016 Sheet 15 of 16 US 9,411,654 B2

)g“ 1500

1502
Configure & 7
FPropagale VF

\és 1504

Transfer VF info }
{0 Structure

% 1508
Include ROM - 7
Size in VF Info
% 1508
Copy Structure to
Logical Partition
é’ 1510
initiste Logical B~
FPartition
% 1512
Delermine Use L~
for VF's

Expansion ROM
% 1514

Ratrieve ROM
BAR Addresses

% 1516

Uze Vi Calito
Read Addresses

‘é 1518

Provide o
Expansion ROM
Data from PF

FG. 15

U.S. Patent Aug. 9,2016 Sheet 16 of 16 US 9,411,654 B2

g““ 1800

1802
Configure & P
Fropagats VF
%v 1604

Transier VF Info }
o Structurs

Y 1606

include ROM P
Size in VF Info

% 1508

o

o

Lopy Siructurs o
Logical Partition

é 1610

Initiate Logical
Partition

% 1612

Detarmine Use
for VF's
Expansion ROM

% 1614

Retrieve ROM
BAR Addrezses

% 1818

UseViCalite
Read Addressas

é‘ 1618

Provids: o
Expansion HOM
Data from PF

FIG. 18

US 9,411,654 B2

1
MANAGING CONFIGURATION AND
OPERATION OF AN ADAPTER AS A
VIRTUAL PERIPHERAL COMPONENT
INTERCONNECT ROOT TO EXPANSION
READ-ONLY MEMORY EMULATION

1. FIELD OF THE DISCLOSURE

The present disclosure relates generally to computer sys-
tems, and more particularly, to managing virtual functions
that are hosted by a virtualized input/output (I/O) adapter.

II. BACKGROUND

Single Root I/O Virtualization (SR-IOV) is a specification
that allows a Peripheral Component Interconnect Express
(PCle) device to appear to be multiple separate physical PCle
devices. SR-IOV enables a virtualization intermediary (VI),
such as a hypervisor or virtual input/output (I/0) server oper-
ating system, to configure an I/O adapter into a number of
virtual functions (VFs). The virtual functions may be
assigned to different operating system images (OSIs), or logi-
cal partitions (LPARs).

The virtual functions belong to a PCI hierarchy and are of
a device type that may be undefined in operating system and
system firmware. Configuration of the virtual functions may
require significant administrator man-hours and system
downtime. Association and management of the virtual func-
tions with a PCI adapter or slot location that is subject to PCI
adapter maintenance and administrative operations, such as
adapter hot plug and dynamic assignment to or from logical
partitions, may be undefined in operating systems and system
firmware.

1II. SUMMARY

In a particular embodiment, a computer implemented
method of managing an adapter includes identifying a firm-
ware image configured to enable configuration firmware of a
logical partition, where the firmware image is associated an
expansion read-only memory (ROM). Access to the firmware
image may be enabled by the logical partition, and the firm-
ware image may be used to control of an operation of the
adapter.

In another particular embodiment, an apparatus includes
an adapter, a processor, and a memory storing program code,
the program code executable by the processor to identify a
firmware image configured to enable configuration firmware
of'a logical partition, where the firmware image is associated
an expansion read-only memory (ROM). Access to the firm-
ware image may be enabled by the logical partition, and the
firmware image may be used to control of an operation of the
adapter.

In another particular embodiment, a computer program
productincludes a computer usable medium having computer
usable program code embodied therewith. The computer
usable program code may be executable by a processor to
identify a firmware image configured to enable configuration
firmware of a logical partition, where the firmware image is
associated an expansion read-only memory (ROM). Access
to the firmware image may be enabled by the logical partition,
and the firmware image may be used to control of an opera-
tion of the adapter.

These and other advantages and features that characterize
embodiments of the disclosure are set forth in the claims
listed below. However, for a better understanding of the dis-
closure, and of the advantages and objectives attained through

10

15

20

25

30

35

40

45

50

55

60

65

2

its use, reference should be made to the drawings and to the
accompanying descriptive matter in which there are
described exemplary embodiments of the disclosure.

IV. BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11is ablock diagram of a first embodiment of a system
to manage a configuration space of an /O adapter;

FIG. 2 is a block diagram of a second embodiment of a
system to manage a configuration space of an /O adapter;

FIG. 3 is ablock diagram of a third embodiment of a system
to manage a configuration space of an /O adapter;

FIG. 4 is a block diagram of an embodiment of a system
having an operating system that manages elements of a non-
shared, legacy PCI adapter;

FIG. 5 is a block diagram of an embodiment of a system
having an operating system that manages elements of a non-
shared, SR-IOV adapter;

FIG. 6 is a block diagram of an embodiment of a system
having an operating system that manages clements of an
adapter;

FIG. 7 is a is a block diagram pictorially illustrating an
embodiment of a system to virtualize ROM images of differ-
ent physical functions;

FIG. 8 is a block diagram of an embodiment of a system
800 configured to perform pass-through mapping of logical
partition address space into PCI system address space;

FIG. 9 is a flow diagram of an embodiment of a method of
a PCIM image virtualization process that maps or otherwise
translates a ROM image of a physical function of an I/O
adapter into a virtualized expansion ROM firmware image;

FIG. 10 is a flow diagram of an embodiment of a method
executed to virtualize an expansion ROM firmware image;

FIG. 11 is a flow diagram of another embodiment of a
method of processing an expansion ROM firmware image;

FIG. 12 is a flow diagram of a method of performing
expansion ROM firmware image virtualization;

FIG. 13 is a flow diagram of another embodiment of a
method of virtualizing an expansion ROM firmware image;

FIG. 14 is a flow diagram of an embodiment of a method of
enabling a logical partition to access an expansion ROM
firmware image;

FIG. 15 is a flow diagram of another embodiment of a
method of presenting an expansion ROM firmware image;
and

FIG. 16 is a flow diagram of another embodiment of a
method of virtualizing an expansion ROM firmware image;

V. DETAILED DESCRIPTION

In a virtualized computer system, a hardware input/output
(I/0) adapter may be capable of providing virtual functions to
multiple logical partitions. For example, the hardware 1/O
adapter may be a single root input/output virtualized (SR-
1I0OV) adapter or a multiple root input/output virtualized (MR-
I0OV) adapter. A virtualization intermediary (VI), such as a
hypervisor, a hosting operating system, or other firmware or
software entity within a virtualized computer system acting
as a virtualization management agent, may manage the
execution of the multiple logical partitions and assign one or
more of the virtual functions to particular logical partitions to
enable the logical partitions to perform I/O operations.

Each virtual function may have an associated configuration
space that is located at a memory of the hardware [/O adapter.
The configuration space may include a read-only portion and
a read-write portion. For example, the read-only portion may
provide information associated with the virtual function, such

US 9,411,654 B2

3

as a device identifier and a vendor identifier, and information
associated with the hardware 1/O adapter, such as a number of
ports of the hardware 1/O adapter and an arrangement of the
ports. The read-write portion may include parameters that can
be configured (e.g., by a logical partition or by an application
executing in the logical partition), such as enabling/disabling
memory-mapped /O (MMIO), enabling/disabling direct
memory access (DMA), setting a maximum link speed,
enabling/disabling advanced error handling, setting another
virtual function parameter or any combination thereof. In a
particular embodiment, the configuration space may include
one or more registers, such as read-only registers and read-
write registers.

The virtualization intermediary may provide an access
mechanism to enable a logical partition to access the configu-
ration space that is associated with the virtual function that is
assigned to the logical partition. The access mechanism pro-
vided by the virtualization intermediary may be a high-level
access mechanism that uses lower-level access mechanisms
to access the configuration space of each virtual function. For
example, the access mechanism provided by the virtualiza-
tion intermediary may call a configuration space access
mechanism of a root complex, an adapter provided configu-
ration mechanism, another access mechanism, or any combi-
nation thereof.

A particular embodiment facilitates the implementation
and application of Peripheral Component Interconnect
Express (PCle) Single Root I/O Virtualization (SR-IOV)
adapter by presenting the SR-IOV adapter and associated
virtual functions to system components in a manner that
avoids change to the system components. [llustrative such
system components may be outside of the virtualization inter-
mediary, such as system or platform management systems,
operating systems, system firmware, and 1/O device drivers.
The virtualization intermediary may detect and initialize
physical functions and virtual functions correctly and appro-
priately.

An embodiment enables a virtualization intermediary to
present and operate SR-IOV adapters and virtual functions
within system management, operating system, and system
firmware components in a manner that substantially con-
forms to that of non-SR-IOV PCI adapters. SR-IOV technol-
ogy may be adapted to operating systems and firmware that
already support PCI-e adapters in an automatic and inexpen-
sive manner.

An SR-IOV adapter may be virtualized to be shared by
multiple OSIs/LPARs within a logically partitioned environ-
ment, or may be assigned to one OSI/LPAR as a dedicated
adapter. In the shared case, a virtualization intermediary may
configure the adapter in SR-IOV-enabled mode and make
individual virtual functions available for assignment to an
individual operating system or logical partition.

PCI devices may be used by firmware to load an operating
system’s bootimage. A boot image may be loaded in memory
from a disk connected directly to the system or connected by
a storage network. The boot image may also be loaded via a
general data network using the Bootstrap Protocol (BOOTP)
or Trivial File Transfer Protocol (TFTP). To this end, a PCI
device may provide a boot time driver (e.g., OpenFirmware
FCode, EFI Byte Code, etc.) that may be used by firmware
(e.g., OpenFirmware, EF1, BIOS, etc.) to operate the device to
load the boot image.

A boot time driver of a PCI device may be obtained from
the expansion read-only memory (ROM) of the PCI device.
The expansion ROM is memory mapped as any other PCI
MMIO region through a base address register (BAR). The
expansion ROM is accessed via MMIO to obtain the appro-

10

15

20

25

30

35

40

45

50

55

60

65

4

priate driver. PCI SR-IOV enables a virtualization intermedi-
ary (VI), such as a hypervisor or virtual 1/O server operating
system, to configure a PCI adapter into a number of virtual
functions (VFs) that can then be assigned to different operat-
ing system images (OSIs), or logical partitions (LPARs).
However, PCI SR-IOV does not define an Expansion ROM
BAR for virtual functions. In order for logical partition firm-
ware, or configuration firmware, to obtain an appropriate boot
time driver of a logical partition, the expansion ROM area
must be emulated by the virtualization intermediary. Further-
more, no driver in the physical expansion ROM may match
the PCI IDs for the virtual function, so the image may need to
be emulated to allow configuration firmware to read a virtu-
alized expansion ROM for a virtual function and to find an
image that matches the PCI configuration IDs of the virtual
function as virtualized by the virtualization intermediary.

Where the physical function (PF) expansion ROM includes
an image appropriate for its virtual functions, the PCIM may
leave the expansion ROM mapped and provide the mapped
address to the logical partition/configuration firmware to
directly access a virtual function’s parent physical function
expansion ROM. However, it may be desirable to separate the
physical function and virtual function MMIO regions to cre-
ate error isolation between the physical function accessed by
the PCIM and the virtual function accessed by the logical
partition, requiring the PCIM to create a virtualized expan-
sion ROM image to be used by logical partition owning the
virtual function. The virtualization intermediary may require
the PCIM to limit the size of the virtualized image to save
memory space, so the PCIM may need to filter firmware
images from the expansion ROM to those needed for virtual
functions and supported by the system architecture.

An embodiment of a method may virtualize the PCI expan-
sion ROM and PCI firmware image to enable configuration
firmware, or partition firmware, to load a boot time driver of
avirtual function when a virtualization intermediary presents
avirtual function to firmware as a single-function PCI device.

A first aspect of an embodiment may determine an appro-
priate PCI firmware image of an expansion ROM from each
physical function that is needed by the child virtual
function(s) of the physical function(s). A second aspect of an
embodiment may provide an access mechanism to a partition
in orderto access the appropriate expansion ROM image. The
expansion ROM image may be a virtualized image or pass-
through access to the virtual function’s parent physical func-
tion Expansion ROM.

A virtualized, in-memory expansion ROM image may be
created using PCI firmware images across any of the physical
functions of the adapter. The ROM images may be restruc-
tured using the PCI firmware specification to create a single
expansion ROM image. The image may include PCI firmware
images needed by virtual functions. The image may be used
by the operating system images supported by the system
architecture and the virtualization intermediary. A physical
function expansion ROM image may be mapped into PCI
memory space by the PCIM. The image may be accessed
directly by a logical partition.

Platform architecture or function isolation requirements
may dictate whether the PCIM should create a virtualized
in-memory expansion ROM image for virtual functions to
access, or map each expansion ROM BAR into PCI address
space for pass-through access from each logical partition
owning a virtual function to the parent physical function
expansion ROM of the virtual function.

A virtualized expansion ROM image may be created by
searching through each SR-IOV capable physical function for
the PCI firmware images needed for that physical function’s

US 9,411,654 B2

5

virtual functions that are also compatible with the operating
system images supported by the virtualization intermediary.
For each of the PCI firmware images, the PCIM may modify
the PCI header and may add the image to with the modified
header to create a new in-memory expansion ROM image that
complies with the PCI firmware specification.

The virtualized expansion ROM image may then be copied
to the virtualization intermediary for presentation to each
logical partition that owns one of the virtual functions. Alter-
natively, virtualized images may be created and used for one
or more virtual functions. When each virtual function is con-
figured in the virtualization intermediary, the image to be
used for each virtual function may identified to the virtual-
ization intermediary, to be later presented to the virtual func-
tion’s client logical partition. If the latter option of pass-
through access to the physical function’s Expansion ROM is
appropriate, the PCIM may map an expansion ROM BAR of
each SR-IOV capable physical function into PCI address
space. The PCIM may further provide the address to the
virtualization intermediary for each physical function.

Alternatively, the appropriate mapped expansion ROM
address may be provided to the virtualization intermediary
for each virtual function as those virtual functions are con-
figured. For instance, the first physical function may provide
an appropriate expansion ROM image with PCI firmware
images for any virtual function configured on any physical
function on the SR-IOV adapter. The expansion ROM image
of'the first physical function may be mapped into PCI address
space, and the address could be used for each virtual function.

A logical partition may access the expansion ROM image
using various methods in accordance with different embodi-
ments. For example, the virtualization intermediary may pro-
vide an address and size of the expansion ROM image to the
logical partition. The address may be used to map the expan-
sion ROM image directly into the memory space of the logi-
cal partition. According to another embodiment, the virtual-
ization intermediary may present a special interface (e.g.,
system call, hypervisor call, etc.) to allow the logical partition
to read the virtual function’s expansion ROM image of the
virtual function (and to determine the size of the ROM image)
without an address.

Where an address based mechanism (e.g., the first embodi-
ment) is used to provide a logical partition with access to the
expansion ROM image of the virtual function, a logical par-
tition may obtain the address using various processes or com-
bination of processes. In a first example, the virtualization
intermediary may present the address and size of an expan-
sion ROM image ofa virtual function to a logical partition via
an in-memory data structure copied to the memory space of
the logical partition prior to starting the logical partition. In
another example, the virtualization intermediary may inter-
cept calls from the logical partition/configuration firmware to
the virtualization intermediary to read the PCI configuration
Expansion ROM BAR and to provide an address. The address
may be assigned by the virtualization intermediary for the
virtualized, in-memory expansion ROM image, or for a PCI
address mapped by the PCIM.

The configuration firmware may map the expansion ROM
image address directly into logical partition memory space
for access without use of a call to the virtualization interme-
diary. If a virtualized, in-memory expansion ROM image is
being used, the virtualization intermediary may intercept the
initial call to map the expansion ROM into logical partition
memory space. The virtualization intermediary may instead
map the logical partition address to virtualization intermedi-
ary memory containing the virtualized image for read-only
access.

20

25

40

45

6

Alternatively, logical partition firmware may use a special
call to the virtualization intermediary with the given address
to access the Expansion ROM image. The virtualization inter-
mediary may intercept the read of the image when the address
indicates to the virtualization intermediary that it is for a
virtualized, in-memory Expansion ROM image, and respond
to the call with the appropriate data from the in-memory
image. When using a physical function’s physical Expansion
ROM image, the logical partition may map the address nor-
mally as any other PCI address, for read-only access, to
logical partition memory space. Configuration firmware may
then read from the mapped address through to the physical
expansion ROM of the physical function.

In the case of a dedicated (e.g., non-shared) operating
system, the operating system may desire to use the adapter in
legacy mode. In legacy mode, the SR-IOV capabilities may
not be enabled or used. Another legacy mode scenario may
include an adapter enabled for SR-IOV and an operating
system that implements a single device driver for the virtual
function (or for each virtual function of a plurality of multiple
functions). The device driver arrangement may avoid devel-
opment of a more complex device driver that encompasses
both virtual function and adapter physical and management
functions.

Where a platform management administers logical parti-
tions and shares SR-IOV adapters as individual virtual func-
tions, an SR-IOV-enabled adapter may be dedicated to a
single operating system or logical partition by assigning all of
the adapter virtual functions to the operating system or logical
partition. This dedicated assignment may allow the operating
system or logical partition to provide a virtual function device
driver and may delegate the larger adapter configuration and
management or service functions to the platform manage-
ment and virtualization intermediary.

A computing system that is not under such a partition
management agent (i.e., a non-managed system) may inherit
ownership ofall of the PCI devices. The operating system and
system firmware may perform all adapter configuration and
management operations. The operating system may provide
device driver resources to manage the adapter, whether vir-
tualized or not. Further, an operating system may desire to use
a non-shared adapter in a legacy mode, i.e., without SR-IOV
being enabled. Other operating system instances running on
the same logically partitioned system may desire to use the
adapter in a non-shared, virtualized mode (e.g., SR-IOV-
enabled) when ownership of the adapter is transferred to the
operating system or logical partition. An embodiment may
enable an SR-IOV adapter to be assigned to, or on a non-
managed system to default to be owned by, an operating
system or logical partition as wholly owned by that operating
system or logical partition in either a virtualized or non-
virtualized mode. According to an embodiment, the virtual-
ization intermediary automatically and selectively translates
between an SR-IOV function to an emulated PCI-standard
function to enable control by the operating system.

Referring to FIG. 1, a block diagram of a first embodiment
of a system having functions hosted by an input/output
adapter is depicted and generally designated 100. The system
may use a virtualization intermediary 110 to selectively and
automatically correlate SR-IOV virtual functions to non-SR-
IOV functions, such as PCI-standard functions.

More particularly, the system 100 may include a hardware
server 102 that is managed by the virtualization intermediary
110, such as a hypervisor. The hardware server 102 may
include hardware resources, such as a first board 104, a sec-
ond board 105, and a third board 106. While three boards are
illustrated in FIG. 1, the number of boards may be increased

US 9,411,654 B2

7

or decreased based on processing considerations. The boards
104-106 may include processors 130-132, memory 133-135,
and input/output (I/O) adapters 136-138. Each of the boards
104-106 may include additional hardware resources (not
shown), such as specialized processors (e.g., digital signal
processors, graphics processors, etc.), disk drivers, other
types of hardware, or any combination thereof. The proces-
sors 130-132, the memory 133-135, and the 1/O adapters
136-138 of the hardware server 102 may be managed by the
virtualization intermediary 110. Each processor of the pro-
cessors 130-132 may be a simultaneous multithreading
(SMT)-capable processor that is capable of concurrently
executing multiple different threads.

The virtualization intermediary 110 may create and man-
age logical partitions, such as virtual servers 112,113,143. A
logical partition may be a subset of the resources of the
hardware server 102 that is virtualized as a separate virtual
server. Each of the virtual servers 112, 113, 143 may have its
own set of virtual resources, similar to a physical server. For
example, the first virtual server 112 may include virtual pro-
cessors 120, virtual memory 122, and virtual /O adapters
124. The second virtual server 113 may include virtual pro-
cessors 121, virtual memory 123, and virtual /O adapters
125. The second virtual server 143 may include virtual pro-
cessors 143, virtual memory 145, and virtual /O adapters
146. The virtualization intermediary 110 may map the hard-
ware of the hardware server 102 to the virtual servers 112,
113, 143. For example, the processors 130-132 may be
mapped to the virtual processors 120, 121; the memory 133-
135 may be mapped to the virtual memory 122, 123, and the
1/0 adapters 136-138 may be mapped to the virtual I/O adapt-
ers 124-125. Each of the virtual servers 112, 113, 143 may
include a physical /O adapter 147-149. The physical /O
adapters 147-149 may correspond to 1/O adapters 136-138.
The virtualization intermediary 110 may manage the selec-
tion of portions of the hardware server 102 and their tempo-
rary assignment to portions of the virtual servers 112, 113,
including assignment of one or a plurality of physical adapt-
ers 136-138 to one virtual server.

The virtualization intermediary 110 may provide a con-
figuration mechanism 180 to configure and manage a PCI
hierarchy that includes a PCI host bridge and virtual func-
tions. SR-IOV virtual functions may be presented to an oper-
ating system 114, 115 as non-IOV functions of a PCI multi-
function device. According to another embodiment, the
configuration mechanism 180 may not configure the adapters
136-138 in SR-IOV mode, and may instead allow the operat-
ing system 114, 115 to operate the adapters 136-138 as legacy
PCI adapters.

Referring to FIG. 2, a block diagram of a second embodi-
ment of a system to manage functions hosted on an I/O
adapter is depicted and generally designated 200. In the sys-
tem 200, a hypervisor, or other virtualization intermediary
204, may enable multiple logical partitions to access virtual
functions provided by hardware that includes a hardware [/O
adapter 202. For example, the virtualization intermediary 204
may enable a first logical partition 206, a second logical
partition 207, and an N* logical partition 208, to access vir-
tual functions 232-235 that are provided by the hardware I/O
adapter 202. To illustrate, the virtualization intermediary 204
may use a first physical function 230 of the hardware 1/O
adapter 202 to provide a first instance of a first virtual function
232, a second instance of a first virtual function 233, and an
N7 instance of a first virtual function 234 to the logical par-
titions 206-208. The virtualization intermediary 204 may use

10

15

20

25

30

35

40

45

50

55

60

8

a second physical function 231 of the hardware 1/O adapter
202 to provide a second virtual function 235 to the logical
partitions 206-208.

The physical functions 230, 231 may include PCI functions
that support single root I/O virtualization capabilities. Each of
the virtual functions 232-235 may be associated with one of
the physical functions 230, 231 and may share one or more
physical resources of the hardware 1/O adapter 202.

Software modules, such as a physical function (PF) man-
ager 220, may assist the virtualization intermediary in man-
aging the physical functions 230, 231 and the virtual func-
tions 232-235. For example, a user may specify a particular
configuration and the PF manager 220 may configure the
virtual functions 232-235 from the physical functions 230,
231 accordingly.

In operation, the PF manager 220 may enable the first
virtual function instances 232-234 from the first physical
function 230. The PF manager 220 may enable the second
virtual function 235 from the second physical function 231.
The virtual functions 232-235 may be enabled based on a user
provided configuration. Each of the logical partitions 206-
208 may execute an operating system (not shown) and client
applications (not shown). The client applications that execute
at the logical partitions 206-208 may perform virtual input/
output operations. For example, a first client application
executing at the first logical partition 206 may include first
client virtual 1/0 226, and a second client application execut-
ing at the first logical partition 206 may include a second
client virtual I/O 227. The first client virtual I/O 226 may
access the first instance of the first virtual function 232. The
second client virtual I/O 227 may access the second virtual
function 235. A third client virtual /O 228 executing at the
second logical partition 207 may access the second instance
of the first virtual function 233. An N client virtual /O 229
executing at the N logical partition 208 may access the N
instance of the first virtual function 233.

The virtualization intermediary 204 may assign the first
instance of the first virtual function 232 and the first instance
of'the second virtual function 235 to the first logical partition
206. The virtualization intermediary 204 may provide the first
logical partition 206 with two tokens (not shown), such as a
first token and a second token, to enable the first logical
partition 206 to access the virtual functions 232 and 235. The
token may include a group identifier that identifies a physical
slot location of the hardware /O adapter 202 that hosts the
virtual functions 232 and 235. The hardware I/O adapter 202
that hosts the virtual functions 232 and 235 may be moved
from a first physical slot location to a second physical slot
location. After the move, the virtualization intermediary 202
may associate the group identifier with the second physical
slot location to enable the virtual functions 232 and 235 to be
provided to the first logical partition 206.

It will be appreciated by one skilled in the art that the
present invention is equally suited to embodiments that do not
utilize a virtual function (VF) manager and client virtual I/O
to enable a logical partition to access a virtual function, and
instead enable a device driver within a logical partition to
directly manage the virtual function. The virtualization inter-
mediary 204 may provide a configuration mechanism 280 to
selectively and automatically associate SR-IOV virtual func-
tions with non-SR-IOV functions, such as PCI-standard func-
tions virtual functions.

Referring to FIG. 3, ablock diagram of a third embodiment
of a system to emulate SR-IOV functions to an operating
system as non-SR-IOV functions is depicted and generally
designated 300. In the system 300, a virtualization interme-
diary (V1) 304 may be coupled to hardware devices, such asa

US 9,411,654 B2

9

hardware 1/O adapter 302, an 1/O hub 306, processors 308,
and a memory 310. The virtualization intermediary 304 may
be coupled to a logical partition 311 that executes an operat-
ing system 312. The virtualization intermediary 304 may
enable the logical partition 311 to access virtual functions
associated with the hardware I/O adapter 302. A physical
function (PF) manager 318 may be coupled to the virtualiza-
tion intermediary 304 to manage the physical functions of the
hardware I/O adapter 302. In a particular embodiment, the PF
manager 318 may be in a logical partition. A management
console 316 may be coupled to the virtualization intermedi-
ary 304 via a service processor 314.

The service processor 314 may be a microcontroller that is
embedded in a hardware server (e.g., the hardware server 102
of FIG. 1) to enable remote monitoring and management of
the hardware server via a management console 316. For
example, the management console 316 may be used by a
system administrator to specify a configuration of hardware
devices, such as specifying virtual functions of the hardware
1/0 adapter 302. The PF manager 318 may configure virtual
functions of the hardware I/O adapter 302 based on configu-
ration information provided by a system administrator via the
management console 316.

The virtualization intermediary 304 may enable hardware
devices, such as the hardware 1/0 adapter 302, to be logically
divided into virtual resources and accessed by one or more
logical partitions (e.g., the N logical partitions 206-208 of
FIG. 2). The VO hub 306 may include a pool of interrupt
sources 328. The virtualization intermediary 304 may asso-
ciate at least one interrupt source from the pool of interrupt
sources 328 with each virtual function of the hardware I/O
adapter 302.

The I/O hub 306 may be a hardware device (e.g., a micro-
chip on a computer motherboard) that is under the control of
the virtualization intermediary 304. The /O hub 306 may
enable the virtualization intermediary 304 to control 1/O
devices, such as the hardware /O adapter 302.

The processors 308 may include one more processors, such
as central processing units (CPUs), digital signal processors
(DSPs), other types of processors, or any combination
thereof. One or more of the processors 308 may be configured
in a symmetric multiprocessor (SMP) configuration.

The memory 310 may include various types of memory
storage devices, such as random access memory (RAM) and
disk storage devices. The memory 310 may be used to store
and retrieve various types of data. For example, the memory
310 may be used to store and to retrieve operational instruc-
tions that are executable by one or more of the processors 308.

The operating system 312 may execute within the logical
partition 311. The virtual I/O of client applications (e.g., the
client virtual I/Os 226-229 of FIG. 2) that execute using the
operating system 312 may access virtual functions of the
hardware 1/0 adapter 302. The virtualization intermediary
304 may use the I/O hub 306 to connect to and control I/O
devices, such as the hardware /O adapter 302.

The PF manager 318 may include an adapter abstraction
layer 320 and an adapter driver 322. The adapter abstraction
layer 320 may include a generic abstraction to enable con-
figuration of physical functions and virtual functions of the
hardware 1/O adapter 302. The adapter driver 322 may be
specific to each particular model of hardware adapter. The
adapter driver 322 may be provided by a manufacturer of the
hardware [/O adapter 302.

The hardware 1/O adapter 302 may include physical func-
tions and ports, such as a first physical function 324, a second
physical function 325, a first port 326, and a second port 327.

10

15

20

25

30

35

40

45

50

55

60

65

10

The PF manager 318 may configure virtual functions based
on the physical functions 324, 325 and associate the virtual
functions with one or more of the ports 326, 327 of the
hardware [/O adapter 302. For example, the PF manager 318
may configure the first physical function 324 to host multiple
instances of a first virtual function, such as the first instance of
the first virtual function 330 and the Mth instance of the first
virtual function 331, where M is greater than 1. The instances
of the first virtual function 330, 331 may be associated with
the second port 327. The PF manager 318 may configure the
second physical function 325 to host multiple instances of a
second virtual function, such as the first instance of the sec-
ond virtual function 332 and the P? instance of the second
virtual function 333, where P is greater than 1. The instances
of the second virtual function 332, 333 may be associated
with the first port 326. The PF manager 318 may configure
multiple instances of an N? virtual function, such as the first
instance of the N virtual function 334 and the Q”* instance of
the N virtual function 335, where N is greater than 2, and Q
is greater than 1. The instances of the N virtual fanction 334,
335 may be associated with the second port 327. The
instances of the N virtual function 334, 335 may be hosted
by a physical function, such as one of the first physical func-
tion 324, the second physical function 325, and another physi-
cal function (not shown).

Each virtual function (e.g., each of the virtual functions
330-335) may have an associated virtual function identifier
(ID). For example, in the system 300, the first instance of the
first virtual function 330 may have an associated identifier
340, the Mth instance of the first virtual function 331 may
have an associated identifier 341, the first instance of the
second virtual function 332 may have an associated identifier
342, the Pth instance of the second virtual function 333 may
have an associated identifier 343, the first instance of the N7
virtual function 334 may have an associated identifier 344,
and the Q™ instance of the N virtual function 335 may have
an associated identifier 345.

Each virtual function identifier may uniquely identify a
particular virtual function that is hosted by the hardware I/O
adapter 302. For example, when a message (not shown) is
routed to a particular virtual function, the message may
include the identifier associated with the particular virtual
function. As another example, a token 313 may be provided to
the operating system 312 to enable the operating system 312
to access one of the virtual functions 330-335 at the hardware
1/O adapter 302. The token 313 may include a configuration
mechanism 380 that is associated with the accessed virtual
function. For example, the first instance of the first virtual
function 330 may be assigned to the operating system 312.
The token 313 may be provided to the operating system 312
to access the first instance of the first virtual function 330. The
token 313 may include the virtual function identifier 380. The
virtual function identifier 380 may comprise the identifier 340
that is associated with the first instance of the first virtual
function 330.

The virtualization intermediary 304 may assign one or
more of the virtual functions 330-335 to the logical partition
311. For each virtual function that is assigned to the logical
partition 311, the virtualization intermediary 304 may pro-
vide the logical partition 206 with a token (not shown) to
enable the logical partition 311 to access the virtual function.
The token may include a group identifier that identifies a
physical slot location of the hardware I/O adapter 302 that
hosts the assigned virtual functions.

The virtualization intermediary 304 may provide an access
mechanism 380 to enable logical partitions (e.g., the logical
partition 311) to access configuration space associated with

US 9,411,654 B2

11

one or more of the virtual functions 330-335. The virtualiza-
tion intermediary 304 may include an access mechanism 279
to enable logical partitions to access the PCI memory space,
PCI DMA space, and interrupt ranges associate with virtual
functions. In a legacy or SR-IOV model, the operating system
device driver may access to the PCI memory that maps BARs,
as well as access to a DMA window that the virtual function
can use to DMA to memory, and a range of PCI interrupts the
device driver can use to enable the virtual function to signal
interrupts. This feature may provide for virtual functions in
the same or a similar manner to that of legacy mode adapter
function.

FIG. 4 shows a block diagram of an embodiment of a
logically partitioned computing system 400 having an oper-
ating system 402 configured to manage elements of PCI hard-
ware 404, including a PCI adapter 408. The PCI adapter 408
may be non-shared, e.g., owned by a single operating system
402. The PCI Adapter 408 may be a legacy adapter. The
computing system 400 may further include PCI configuration
firmware 438 and a virtualization intermediary (V1) 440, such
as a hypervisor.

The PCI hardware 404 may include a PCI host bridge
(PHB) 406, associated with a PCI-express root port (not
shown). The PCI host bridge 406 may be coupled to the PCI
adapter 408 via a PCI bus 410 representing a PCle physical
link connection (not shown) between the PCle root port and a
PCI adapter 408. The PCI adapter 408 may include a function
412 and a port 414.

The operating system 402 may include a PCI device tree
416 and a PCI device driver 436. The PCI device tree 416 may
include a PCI host bridge node 418 and a device node 420.
The PCI host bridge node 418 may include a hot plug iden-
tifier (ID) 422, a dynamic logical partitioning (DLPAR) ID
424, and PCI bus properties 426. The device node 420 may
include a configuration space 428, memory-mapped /O (MI-
MIO) and direct memory access (DMA) space 430, a PCI
read only memory base address register/read-only memory
(ROMBAR/ROM) space 432, and an interrupt 434.

The PCI host bridge 406 may create an instance of the PCle
bus 410 connected to the PCI adapter 408. The function(s)
412 may be individually addressable in PCI configuration
address space. For example, the function(s) 412 may have the
same PCI device number and differing PCI function numbers
(e.g., ranging from O to 7). Alternatively, the PCI adapter 408
may use PCI alternate routing ID (ARI) configuration
addressing. Each function 412 may have a unique configura-
tion function number ranging from 0 to 255 at an implied
device number of 0. Each function 412 may be associated
with a unique physical port 414 within the PCI adapter 408.
The physical port 414 may create a connection to an external
peripheral I/O interconnect, such as Ethernet, Fiber Channel,
or another peripheral device interconnect.

The function(s) 412 may form a device driver program-
ming interface by which the operating system 402 may utilize
the PCI device driver 436. The PCI host bridge node(s) 418
may represent the PCI host bridge(s) 406, and the PCI device
node(s) 420 may represent each instance of the function(s)
within the PCI adapter 408.

The PCI host bridge node 418 may include properties, or
functions, descriptive of the PCI host bridge 406. Such prop-
erties may include characteristics of the PCle bus 410 created
by that PCI host bridge 406. The characteristics may be used
by the operating system 402 to manage the PCI host bridge
406 and by the PCI device driver 436 to perform PCI bus
transactions. For example, the PCI host bridge node proper-
ties may include an identifier used for a hot plug domain 422
and an identifier for a DLPAR domain 424.

10

15

20

25

30

35

40

45

50

55

60

65

12

The operating system 402 may utilize the configuration
firmware 438 to detect the presence of PCI devices, such as
the function(s) 412. For each detected function 412, the con-
figuration firmware 438 may generate a device node 420
associated with the PCI host bridge node 418 of the PCI
device tree 416. The device node 420 may include functions,
or properties, associated uniquely with the function 412 and
used by the operating system 402 to identify the type and
programming interface of the function 412. Illustrative such
functions may relate to the configuration space 428 and the
ROMBAR/ROM space 432. The properties may further be
used by the device driver 436 to perform PCI bus transactions
specific to that function 412, as well as to properties relating
to the MIMIO and DMA space 430, the ROMBAR/ROM
space 432, and the interrupts 434.

For each device node 420 within the PCI device tree 416,
the operating system 402 may activate an instance of the
device driver 436 to control the characteristics of the associ-
ated function 412. Data transfer operations may be performed
between the operating system 402, the external interconnect,
and devices accessed through the corresponding physical port
414.

The hot plug ID 422 of the PCI host bridge node 418 may
be used to identify the PCI bus 410 physical connection point,
or slot. The slot may be located between the PCI host bridge
406 and the PCI adapter 408. The operating system 402 may
use the hot plug 1D 422 when adapter a power-off or power-on
operation is performed. The operating system 402 may be
running and may be in control of the PCI host bridge 406 and
the PCI bus 410.

To power-oft the adapter 105, the operating system 402
may correlate a hot plug ID of a hot plug power-off/on opera-
tion with the hot plug ID 422 of the PCI host bridge node 418.
As part of performing the power-oft operation, the operating
system 402 may first deactivate the device driver(s) 436. As
discussed herein, the device driver(s) 436 may be associated
with each device node 420, and each device node 420 may be
associated with the PCI host bridge node 418.

When powering-on the PCI adapter 105, the configuration
firmware 438 associated with the operating system 402 may
interrogate each possible PCI configuration address of the
PCI bus 410 to detect each function 412. The configuration
firmware 438 may construct a device node 420 that is asso-
ciated with the PCI host bridge node 418. The operating
system 402 may create instances of the device driver(s) 436
that are associated with each device node 420. The device
driver(s) 436 may control each of the associated functions
412.

The PCI host bridge(s) 406 may be connected individually
to PCI slots. Slots may be a connection point at which the PCI
adapters 408 may be added at a future time. The configuration
firmware 438 may generate the PCI host bridge node(s) 418
of'the PCI device tree 416 for each PCI host bridge 406. This
generation may occur at an instance where the PCI host
bridge 406 is connected to a PCI slot that is empty (e.g., does
not have a PCI adapter 408 present).

The PCI adapter 408 may be transferable to different logi-
cal partitions using DL.PAR. The PCI host bridge node 418 of
the PCI device tree 416 may represent the domain of the
functions 412 that are transferred, collectively, between logi-
cal partitions of the operating system 402. The virtualization
intermediary 440 may act as a management agent of a system
administrator to automatically associate elements of the PCI
hardware 404 with an operating system(s) 402 comprising
logical partitions.

The virtualization intermediary 440 may function as a sys-
tem administrator for DLPAR by removing the PCI adapter

US 9,411,654 B2

13

408 from the operating system 402. More specifically, the
virtualization intermediary 440 may signal to the operating
system 402 to initiate removal of a particular PCI adapter 408
having a DLPAR ID that references a matching DLPAR 1D
424 of the operating system 402. As part of removing the PCI
adapter 408 from the operating system PCI configuration, the
operating system 402 may deactivate the PCI device driver(s)
436 associated with each device node 420 that is associated
with that PCI host bridge node 418. The operating system 402
may release control of the PCI host bridge 406 and the PCI
adapter 408 to the virtualization intermediary 440.

When adding a PCI adapter 408 to the PCI configuration of
an executing operating system 402, the virtualization inter-
mediary 440 may signal the operating system 402 to add the
PCI host bridge node 418 to the PCI device tree 416. The
virtual PCI host bridge node 418 may correspond to the
physical PCI host bridge 406 and to the associated PCle bus
410. The operating system 402 may invoke the configuration
firmware 438 to detect the functions 412 of the PCI adapter
408. The configuration firmware 438 may update the PCI
device tree 416 with a device node 420 corresponding to each
detected function 412 that is associated with the PCI host
bridge node 418 and/or PCle bus 410. The operating system
402 may create an instance of the PCI device driver 436. The
PCI device driver 436 may be associated with each device
node 420 in order to control each of the associated functions
412.

FIG. 5 shows a block diagram of an embodiment of a
logically partitioned computing system 500 having an oper-
ating system 502 configured to manage elements of PCI hard-
ware 504, including an SR-IOV adapter 508. The computing
system 500 may further include a virtualization intermediary
512 and configuration firmware 514. In one sense, FIG. 5
illustrates the PCI hierarchy for the SR-IOV adapter 508.
According to an embodiment, the virtualization intermediary
512 automatically and selectively maps an SR-IOV function
to an emulated PCI-standard function to enable control by the
operating system 502.

The PCI hardware 504 may include a PCI host bridge
(PHB) 506, associated with a PCle root port (not shown). The
PCT host bridge 506 may be coupled to the SR-IOV adapter
508 via a PCI bus 510, representing a PCle physical link
connection (not shown) between the PCl-express root port
and the SR-IOV adapter 508. The SR-IOV adapter 508 may
include physical functions (PFs) 516, 518 respectively
coupled to ports 520 and 522. The SR-IOV adapter 508 may
further include virtual functions (VFs) 524, 526 associated
with the physical function 516, and virtual functions 528, 530
associated with the physical function 518. The operating sys-
tem 502 may include multiple PCI virtual function device
drivers 532, 534.

The SR-IOV adapter 508 may present one or more of the
physical functions 516, 518 at the PCI bus device 510 across
a PCI link. The physical functions 516, 518 may respond to
configuration read and write cycles (e.g., at physical func-
tions 516, 518 numbering O through 7). Alternatively, the
SR-IOV adapter 508 may be designed according to PCI alter-
nate routing ID (ARI) configuration addressing. Each physi-
cal function 516, 518 may have a unique configuration func-
tion number (e.g., ranging from 0 to 255 at an implied device
number of 0). The ports 520, 522 may create a connection to
an external peripheral I/O interconnect, such as Ethernet,
Fiber Channel, or other peripheral device interconnects.

Each physical function 516, 518 may be further configured
by the virtualization intermediary 512 into one or more of the
virtual functions 524, 526, 528, 530. An embodiment of the
virtualization intermediary 512 may include program code

10

15

20

25

30

35

40

45

50

55

60

65

14

residing within firmware of the computer system 500. An
embodiment of the virtualization intermediary 512 may
include a hypervisor. The hypervisor may be a component of
the computer system firmware or a type of operating system,
or program within an operating system, that is a host to the
operating systems 502. Another embodiment of the hypervi-
sor may be a PCI manager program within the computer
system having access to the SR-IOV adapter 508 by some
physical interconnect that may be a PCI link or other physical
connection. The PCI manager of an embodiment may be
located locally or remotely, e.g., in a separate processor or
memory.

Each virtual function 524, 526, 528, 530 may provide a PCI
device programming interface that may be controlled by a
PCI virtual function device driver 532, 534. The PCI virtual
function device drivers 532, 534 may control the virtual func-
tions 524, 526, 528, 530 to perform I/O transactions through
the ports 520, 522 on behalf of the operating system 502.

As discussed herein, the virtual functions 524, 526, 528,
530 may be created under physical functions 516, 518, which
may be associated with the ports 520, 522. The virtual func-
tions 524, 526, 528, 530 may thus share the physical facilities
of'the ports 520, 522. The virtual functions 524, 526, 528, 530
may have a limited ability to perform I/O transactions through
the ports 520, 522 and may affect the physical states of the
ports 520, 522. The virtual functions 524, 526, 528, 530 may
reconfigure the number and capabilities of the individual
physical function 516, 518 within the SR-IOV adapter 508.

FIG. 6 shows a block diagram of an embodiment of a
logically partitioned computing system 600 having an logical
partition 602 configured to manage elements of computer
system hardware 604, including an SR-IOV adapter 606. The
SR-IOV adapter 606 may be non-shared, in that it is assigned
to single logical partition 602. The logical partition 602 may
include an operating system 610 and configuration firmware
612. The computing system 600 may include a virtualization
intermediary 608 configured to automatically map an SR-
10V function to an emulated PCI-standard function to enable
control by the logical partition 602 and/or the operating sys-
tem 610.

The computer system hardware 604 may include a PCThost
bridge (PHB) 614 coupled to the SR-IOV adapter 606 via a
PCle link 616. A PCle bus (not shown) may be logically
superimposed on the PCle link 616 to facilitate PCI bus
transactions between the PCI host bridge 614 and the SR-IOV
adapter 606.

The SR-IOV adapter 606 may include physical functions
(PFs) 618, 620 that are respectively coupled to ports 622 and
624. The SR-IOV adapter 606 may further include a virtual
function (VF) 626 associated with the physical function 618,
and a virtual function 628 associated with the physical func-
tion 620. As shown in FIG. 6 in broken lines, blocks 630 and
632 represent virtual PCI host bridge domains.

The operating system 610 may include a PCI device tree
634 and multiple PCl virtual function device drivers 636, 638.
The PCI device tree 634 may include a PCI host bridge node
640. The PCT host bridge node 640 may be associated with the
PCI host bridge 614. The PCI host bridge node 640 may
include a hot plug ID 642, a DLPAR ID 644, and PCI bus
properties 646.

A virtual PCI host bridge node 648 of the PCI device tree
634 may be associated with the virtual PCI host bridge
domain 632. The virtual PCI host bridge node 648 may
include a hot plug ID 650, a DLPAR ID 652, and PCI bus
properties 654. The virtual PCI host bridge node 648 may be
associated with a device node 656. The device node 656 may
also be associated with the virtual function 628 and the PCI

US 9,411,654 B2

15

virtual function device driver 636. The device node 656 may
include a configuration space 658, MIMIO and DMA space
660, PCI ROMBAR/ROM space 662, and interrupts 664.

A virtual PCI host bridge node 666 of the PCI device tree
634 may be associated with the virtual PCI host bridge
domain 630. The virtual PCI host bridge node 666 may
include a hot plug ID 668, a DLPAR ID 670, and PCI bus
properties 672, derived from the properties of the physical
PCI Host Bridge 614 and PCI bus link 616 and its associated
PCI bus (not shown). The virtual PCI host bridge node 666
may be associated with a device node 674. The device node
674 may also be associated with the virtual function 626 and
the PCI virtual function device driver 638. The device node
674 may include a configuration space 676, MIMIO and
DMA space 678, PCI ROMBAR/ROM space 680, and inter-
rupts 682 that are an exclusive subset of the MMIO, DMA,
and ROMBAR spaces and interrupts provided by the physical
PCI host bridge 614.

The SR-IOV adapter 606 may present one or a plurality of
the physical functions 618, 620 at the PCle link 616 across a
PCle bus. The physical functions 618, 620 may respond to
configuration read and write cycles. Alternatively, the SR-
IOV adapter 606 may be designed according to PCI ARI
configuration addressing. Each physical function 618, 620
may have a unique configuration function number. The ports
622, 624 may create a connection to an external peripheral [/O
interconnect, such as Ethernet, Fiber Channel, or other
peripheral device interconnects.

Each physical function 618, 620 may be further configured
by the virtualization intermediary 608 into one or more of the
virtual functions 626, 628. An embodiment of the virtualiza-
tion intermediary 608 may include a program code within
firmware of the computer system 600. Another embodiment
of the virtualization intermediary 608 may be a hypervisor.
The virtualization intermediary 608 may be a component of
the computer system firmware or a type of operating system
that is a host to the operating systems 610. Another embodi-
ment of the virtualization intermediary 608 may be a PCI
manager.

Each virtual function 626, 628 may provide a PCI device
programming interface that may be controlled by PCI virtual
function device drivers 636, 638. The PCI virtual function
device drivers 636, 638 may control the virtual functions 626,
628 to perform I/O transactions through the ports 622, 624 on
behalf of the operating system 610.

As discussed herein, the virtual functions 626, 628 may be
created under the physical functions 618, 620, which may be
associated with the ports 622, 624. The virtual functions 626,
628 may thus share the physical facilities of the ports 622,
624. The virtual functions 626, 628 may have a limited ability
to perform 1/O transactions through the ports 622, 624 and
may affect the physical state of the port 622, 624. The virtual
functions 626, 628 may reconfigure the number and capabili-
ties of individual physical function 618, 620 within the SR-
IOV adapter 606.

Each of the virtual functions 626, 628 may be assigned to
a different logical partition to enable the logical partitions 602
to access and /O transaction resources of the SR-IOV adapter
606 and the ports 622, 624. In another embodiment, the
SR-IOV adapter 606 may be assigned to a single logical
partition (e.g., and may not be shared by other logical parti-
tions).

The computer system 600 may be configured with the
single logical partition 602 and the associated operating sys-
tem 610 so as to appear as a non-partitioned computer system.
The PCI virtual function device driver 636 may be configured
for a particular type of virtual function, regardless of whether

10

15

20

25

30

35

40

45

50

55

60

65

16
the SR-IOV adapter 606 is shared, non-shared, owned by a
single operating system 610, or is located in a logically par-
titioned computing system.

The configuration firmware 612 may determine the PCI
hierarchy containing the SR-IOV adapter 606. Prior to that
determination, the virtualization intermediary 608 may detect
and configure the SR-IOV adapter to establish a virtual func-
tion 626, 628 for each of the physical ports 622, 624. For an
illustrative SR-IOV adapter 606, the virtualization interme-
diary 608 may configure virtual functions 626, 628 to be in a
one-to-one correspondence with each physical port 618, 620.

The SR-IOV adapter 606 may support different peripheral
device protocols to concurrently access a physical port 618,
620. For example, the SR-IOV adapter 606 may be a con-
verged network adapters configured to enable Ethernet and
Fiber-Channel-Over-Ethernet (FCoE) protocols to simulta-
neously operate over a single physical port 618, 620.

The virtualization intermediary 608 may create a unique
instance of a virtual function 626, 628 for each protocol and
on each physical port 618, 620 configured to operate multiple
protocols. For example, for an illustrative SR-IOV adapter
having four physical ports and enabling two protocols (e.g.,
Ethernet and FCoE), the virtualization intermediary 608 may
configure two virtual functions on each physical port, for a
total of eight virtual functions.

The virtualization intermediary 608 may provide the con-
figuration firmware 612 with information to construct the PCI
device tree 634 having the virtual PCI host bridge nodes 648,
666. The virtual PCI host bridge node 648 may correspond to
the virtual function 628 of the SR-IOV adapter 606 assigned
to the logical partition 602. Each virtual PCI host bridge node
648, 666 may be similar to the PCl host bridge node 418 of the
device tree 416 in FIG. 3. Each virtual PCI host bridge node
648, 666 may be representative of the combined PCI bus and
DLPAR domain properties of the PCI host bridge 614, the
SR-IOV adapter 606, and the physical function 618, indicated
as the virtual PCI host bridge domain 630.

The PCI bus properties 654 may be used by the virtualiza-
tion intermediary 608 to address the virtual PCI host bridge
domain 632. For instance, the virtualization intermediary 608
may translate PCI bus operations targeting the virtual PCI
host bridge node 648. As such, the presence of the physical
function 620 may be transparent to the operating system 610,
as well as to the configuration firmware 612 of the logical
partition 602.

The configuration firmware 612 may perform PCI hierar-
chy detection using PCI configuration read operations across
the PCle link 616. The configuration firmware 612 may thus
detect the presence of a PCI function at various possible
device addresses. For example, a function may be detected at
function numbers 0 through 7, or alternatively at ARI function
numbers 0 through 255 of an implied ARI device number.

The virtualization intermediary 608 may intercept PCI
configuration read or write transactions to the PCle link 616.
The virtualization intermediary 608 may respond to a PCI bus
configuration read operation such that the configuration firm-
ware 612 first detects the virtual function 626 at an emulated
function number 0 of the virtual PCI host bridge bus and
device 0. The virtualization intermediary 608 may respond to
the configuration firmware reads that are directed to only PCI
device 0 and function 0 below the virtual PCl host bridge. The
configuration firmware 612 may detect only a single PCI
function, at function 0, in the PCI hierarchy below the virtual
PCT host bridge. The virtual function 626 may thus be repre-
sented to the operating system 610 in a manner analogous to
that of a PCI single function legacy adapter, such as the PCI
adapter 408 of FIG. 4.

US 9,411,654 B2

17

The virtualization intermediary 608 may pass configura-
tion read operations directly to an actual virtual function
configuration register within the SR-IOV adapter 606. The
logical virtual PCI host bridge bus number and device func-
tion number may be translated to the actual PCI configuration
bus/device/function number utilized on the physical PCI bus,
or PCle link 616.

In another embodiment, the virtualization intermediary
608 may respond directly to the configuration firmware read
operations with an emulated register value. The virtualization
intermediary 608 may have derived the emulated register
value as part of configuring the SR-IOV adapter 606 in SR-
IOV mode. This action may maintain the appearance of the
virtual functions 626, 628 as single PCI function. The trans-
parency of the physical functions 618, 620 on the virtual PCI
host bridge bus may further be maintained with respect to the
configuration firmware 612.

The configuration firmware 612 may also be modified from
alegacy PCI function configuration to account for limitations
of'the PCI SR-IOV Architecture. The limitations may relate to
the assignment of memory mapped address spaces associated
with the virtual functions 626, 628. The configuration firm-
ware 612 may write to the PCI base address registers ofa PCI
function to determine the size of the PCI memory space used
by that base address register of that function. The configura-
tion firmware 612 may select a location within PCI memory
at which to bind the base address register and associated PCI
memory space. However, the virtualization intermediary 608
may establish a location of the PCI memory regions to map
virtual function PCI memory spaces using base address reg-
isters in the physical functions 618, 620.

According to the SR-IOV architecture, the virtual func-
tions 626, 628 may not actually implement the PCI base
address registers of a PCI function. As such, the PCI bus
properties 654 of the virtual PCI host bridge node 648 may
specify that the PCI base address registers are read only and
cannot be changed in relation to their PCI memory location.
As discussed herein, the PCI base address registers may
belong to the device(s) on the PCI bus associated with the
virtual PCI host bridge node 648.

In order for the configuration firmware 612 to determine
the size of each PCI base address space within the virtual
functions 626, 628, the configuration firmware 612 may per-
form the configuration write of all-ones data to each base
address register. The virtualization intermediary 608 may
emulate the action by storing temporary all-ones values.
Where the configuration firmware 612 reads from the base
address register, the virtualization intermediary 608 may
return an emulated value of all-one bits. The emulated value
may indicate the power of two size of the PCI memory space
associated with the virtual function base address register. The
virtual functions 626, 628 may then return the actual PCI
address associated with that virtual function base address
register for subsequent configuration reads from that virtual
function base address register.

A legacy PCI function may be connected to a ROM device
containing adapter vital product data or boot drivers used with
that PCI function or adapter. The PCI function may include a
ROMBAR that is subject to location within PCI memory by
the configuration firmware 612. The virtualization interme-
diary 608 and configuration firmware 612 may perform the
same sequence regarding the ROM base address register
within the virtual function configuration space.

The operating system 610 may provide hot plug support. A
hot plug module may enable a user to use an application
interface within the operating system 610 to select a particular
physical slot. The physical slot may include a PCI adapter for

10

15

20

25

30

35

40

45

50

55

60

65

18

powering off or on. The hot plug module may enable the user
to remove or add a PCI adapter without disrupting other
functions of the computer system 600.

The PCI device tree 634 may be generated by the virtual-
ization intermediary 608. The PCI host bridge node 640 ofthe
PCI device tree 634 may represent the physical PCI host
bridge 614 of the computer system hardware 604. The PCI
host bridge node 640 may not include a PCI device within its
hierarchy, but may include a hot plug ID 642. The operating
system 610 may associate the hot plug ID 642 with a physical
location of a PCle slot. The PCle slot may accommodate an
adapter, such as the SR-IOV adapter 606, or a legacy, non-
SRIVO PCIE adapter, in the same location connected to the
PCle link 616.

The hot plug ID 642 may be a logical ID that corresponds
to a physical slot location or a power domain associated with
the physical slot. The hot plug ID 642 may, itself, be the
physical location ID, such as a system physical location code.
Hot plug power operations may utilize the hot plug ID 642 to
instruct the operating system 610 with the physical location
of'a power domain within the computer system hardware 604.
The power domain may be the object of a power off or power
on operation. The operating system 610 may use the hot plug
1D 642 to determine PCI host bridges and PCI devices within
the PCI device tree 634 that are affected by a power off or
power on to the hot plug location.

An empty PCI slot may be assigned to a logical partition
602, and a PCI adapter may later be added to the PCI slot. The
virtualization intermediary 608 may present the operating
system 610 with the PCI host bridge node 640. The operating
system 610 may use the PCI host bridge node 640 to identify
the location of a hot plug power on operation. Such a hot plug
power operation may add a PCle adapter to a physical PCI
host bridge 614.

While the adapter shown in FIG. 6 is an SR-IOV adapter, a
hot plug operation of another embodiment may include a
non-SR-IOV adapter having similar or the same connectivity
and location possible. In a particular embodiment, a PCle
adapter may be connected to a PCI host bridge that is associ-
ated with a previously empty or powered-off slot. When the
computing system hot plug module performs a power-on of
the PCle adapter, the virtualization intermediary may deter-
mine whether the adapter is SR-IOV-capable. Where the
adapter is a non-SR-IOV type of adapter, the virtualization
intermediary may take no further action. The configuration
firmware may detect a PCI device tree for the non-SR-IOV
adapter with a device driver, as shown in FIG. 4. Where the
adapter 606 is SR-IOV capable, the virtualization intermedi-
ary 608 may further determine whether the operating system
610 uses SR-IOV virtual function device drivers 636, 638 or
a non-SR-IOV mode device driver.

According to a particular embodiment, the virtualization
intermediary 608 determines that the operating system 610
does not use virtual function device drivers for the adapter
606. In such a scenario, the virtualization intermediary 608
may take no further action. As shown in FIG. 4, the configu-
ration firmware 438 may detect a PCI device tree 416 for the
adapter 406. Alternatively, the virtualization intermediary
608 may determine that the operating system 610 does use
virtual function device drivers 636, 638 for the adapter 606. In
response, the virtualization intermediary 608 may configure
the adapter 606 as SR-IOV enabled with a single virtual
function 626, 628 for each device protocol utilized on each
port 622, 624.

The virtualization intermediary 608 may generate the PCI
device tree 634 for the operating system 610. The operating
system 610 may include the PCI host bridge node 640 and the

US 9,411,654 B2

19

virtual PCI host bridge node 648 for each virtual function
626, 628. The virtualization intermediary 608 may intercept
PCI configuration cycles of the configuration firmware 612 to
the PCI bus. The PCI bus may be associated with the PCI host
bridge 614. The virtualization intermediary 608 may return
that there are no devices present. For example, the PCI host
bridge node 640 may have no associated device nodes 656.
The configuration firmware 612 may detect a single PCI
function at each PCI host bridge node 614 to generate a device
node 656 for that associated virtual function. The configura-
tion firmware 612 may further create an instance of a virtual
function device driver 636, 638 in association with the device
node 656.

An embodiment may enable the powering-off an adapter
that is configured within a running logical partition 602. The
power-off operation may allow repair or replacement of an
adapter with an alternative adapter. The new adapter may be
a different type than the original adapter.

The hot plug power off operation may use the hot plug ID
650 to identify a power domain containing a PCIE adapter.
Accordingly, the hot plug ID 650 may enable the virtualiza-
tion intermediary 608 to identify all PCI hierarchies and
devices within the shared hot plug domain represented by the
physical slot location of the adapter 606.

Prior to performing the physical power off operation, the
operating system 610 may determine all affected PCI devices
by correlating the hot plug ID specified in the operation with
the hot plug IDs 650, 668 in all virtual PCI host bridge nodes
648, 666. The operating system(s) 610 may then terminate the
operations of the device drivers 636, 638 associated with the
device nodes 656, 674 under each virtual PCI host bridge
node 648, 666 having that same hot plug ID 650, 668. Once
the device drivers 636, 638 have terminated operations, the
virtualization intermediary 608 and hot plug module may
continue with the physical power off operation of the hot plug
domain associated with that hot plug ID 650, 668.

Where a PCle slot containing an adapter has been powered
off, it may be possible for the system user or a service repre-
sentative to repair or replace the adapter. The replacement
adapter may be a different type of adapter (e.g., replacing a
PCle adapter with an SR-IOV capable adapter or vice versa).
In either case, a subsequent power-on of the PCle slot may
result in the virtualization intermediary 608 presenting the
operating system 610 with an updated PCI device tree 634.
The operating system 610 may use the SR-IOV virtual func-
tion device drivers 636, 638, along with virtual PCI host
bridge nodes 648, 666 for each of the SR-IOV virtual func-
tions 626, 628 that has been configured by the virtualization
intermediary 608.

A PCI slot may be removed from or added to the control of
aparticular running logical partition 602. A PCI adapter may
be removed from a logical partition to transfer that adapter to
another logical partition during a dynamic logical partition-
ing (DLPAR) operation. DLPAR operations may reference a
PCIE adapter. For example, the PCIE slot location within the
computer system 600 may be referenced using a DLPAR ID
652, 670.

According to an embodiment, a PCle slot associated with
the PCI host bridge 614 may not be assigned initially to the
logical partition 602 at the time that the logical partition 602
is booted. Adding the PCle slot to the logical partition 602
may result in the virtualization intermediary 608 adding a PCI
host bridge node 640, 674 to the PCIE device tree 634. Where
the adapter is a non-SR-IOV type, the virtualization interme-
diary 608 may take no further action. The configuration firm-
ware 612 may detect the PCI device tree 634 for the adapter
606, as shown in FIG. 4.

40

45

20

Where the adapter 606 is SR-IOV capable, the virtualiza-
tion intermediary 608 may determine whether the operating
system 610 uses the SR-IOV virtual function device drivers
636, 638 as non-SR-IOV mode device drivers. Where the
SR-IOV virtual function device drivers 636, 638 are not used,
the virtualization intermediary 608 may take no further
action, and the configuration firmware 612 may detect a PCI
device tree for that adapter 606. Where the SR-IOV virtual
function device drivers 636, 638 are alternatively used, the
virtualization intermediary 608 may configure the adapter as
SR-IOV enabled with a single virtual function 626, 628 for
each device protocol utilized on each port 622, 624. The
virtualization intermediary 608 may further generate the PCI
device tree 634 for the operating system 610, as shown in FIG.
6. As discussed herein, the PCI device tree 634 may include
the PCI host bridge node 640 and the virtual PCI host bridge
nodes 648, 666 for each virtual function 626, 628.

The virtualization intermediary 608 may intercept the PCI
configuration cycles of the configuration firmware 612 to the
PCI bus associated with the vPHBs 648, 666. The configura-
tion firmware 612 may then detect a single PCI function at
each PCI host bridge node 648, 666 to generate a device node
656, 674 for the associated virtual function. The configura-
tion firmware 612 may further create an instance of a virtual
function device driver 636, 638 associated with the device
node 656, 674.

According to an embodiment, no adapter may be physi-
cally plugged into a PCI slot that has been transferred to the
running logical partition 602. A later hot plug power-on
operation may add an adapter to the running logical partition
602. For example, the virtualization intermediary 608 may
enable the operating system 610 to selectively use the adapter
606 according to a legacy or an SR-IOV configuration. Con-
versely, a user may initiate the automatic removal of the
SR-IOV adapter 606 from the running logical partition 608.
The DLPAR ID 652, 670 may be used by the operating system
610 of that logical partition 608 to identify all PCI hierarchies
and devices that will be removed during the DLLPAR opera-
tion.

As represented by the PCI device tree 634, the operating
system 610, may determine the affected PCI devices prior to
relinquishing control of the affected PCI devices. The oper-
ating system 610 may correlate the DLPR ID specified in the
operation with the DLPAR IDs 652, 670 in all virtual PCI host
bridge nodes 648, 666. The operating system(s) 610 may then
terminate the operations of the virtual PCI host bridges
(vPHBs) 648, 666 having DLPAR IDs 652, 670 and the
device nodes 656, 674 under each virtual PCI host bridge 648,
666 (e.g., having that same DLPAR 1D 652, 670). Once all the
device drivers 636, 638 have terminated operations, the slot
may be assigned to another, different logical partition 602.
The slot may alternatively be added back to the original
logical partition 602.

According to a particular embodiment, an SR-IOV adapter
may be plugged below a PCI bridge, such as a PCI bridge of
a PCle switch. The PCle switch may form a PCle link below
a bridge that is analogous to the PCle link 616. The virtual
PCI host bridge 648, 666 may be presented to the logical
partition configuration firmware 612. The PCI bus properties
646, 672 of the virtual PCI host bridge 648, 666 may account
for combined properties of the physical PCI host bridge 614
and the PCle switch. Illustrative such properties may include
PCI bus memory and DMA address ranges, as well as inter-
rupt assignments.

According to a particular embodiment, the virtualization
intermediary 608 may not configure the SR-IOV adapter 606
for SR-IOV mode. Alternatively, the virtualization interme-

US 9,411,654 B2

21

diary 608 may enable the configuration firmware 612 to fully
detect and control configuration functions of the SR-IOV
adapter 606. As such, the configuration firmware 612 may,
itself, configure the SR-IOV adapter 606 for SR-IOV mode.
The configuration firmware 612 may function as a virtualiza-
tion intermediary local to the logical partition 602. The local
virtualization intermediary may make the SR-IOV aspects of
the SR-IOV adapter 606 visible to elements of the logical
partition 602, the operating system 610, the device tree 634,
or the device drivers 636, 638.

Operations of an embodiment are not limited by whether or
not the configuration firmware 612 enables SR-IOV mode
within an SR-IOV adapter that has not been virtualized by a
virtualization intermediary 608 external to the logical parti-
tion 602. Operability may further be independent of what by
method the logical partition 602 represents the SR-IOV
adapter 606 within its device tree 634 or enables device driver
translations to the functions of the SR-IOV adapter 606.

The SR-IOV adapter 606 may be assigned to a single
operating system within a logical partition that is non-shared.
The system 600 of a particular embodiment may determine
whether to configure the SR-IOV adapter 606 for SR-IOV
mode based on a configuration file accessible to the virtual-
ization intermediary 608 upon detecting that the adapter is
SR-IOV-capable.

FIG. 7 is a block diagram pictorially illustrating a ROM
image virtualization system 700 to process ROM images of
different physical functions. An illustrative ROM firmware
image, or firmware image, may be configured to enable
access to a logical partition. For example, the configuration
firmware 612 ofthe logical partition 602 of FIG. 6 may access
and process a firmware image stored the PCI ROMBAR/
ROM space 662. As shown in FIG. 7, a first and second
physical function expansion ROMs, PF0 Expansion ROM
702 and ROM, PF1 Expansion ROM 704, are mapped or
otherwise translated into a virtualized expansion ROM image
706 via PCIM image virtualization processes 708.

As described in greater detail in the flowcharts included
herein, the PCIM image virtualization processes 708 may
read the PFO Expansion ROM 702 and the PF1 Expansion
ROM 704 to determine and retrieve firmware images that are
useful and supported in the virtualized expansion ROM
image 706. The virtualized expansion ROM image 706 rep-
resents a single image that is created to give a logical partition
access to the firmware images of the associated virtual func-
tion(s). These firmware images may be used to boot the vir-
tual function. Unnecessary or unsupported data may be fil-
tered out (e.g., not retrieved, or ignored), and the virtualized
expansion ROM image 706 may be stored in the virtualiza-
tion intermediary.

Turning more particularly to FIG. 7, the PF0 Expansion
ROM 702 includes PCI header data 710, 712, 714, 716 and
PCI firmware images 718, 720, 722, 724. The PF1 Expansion
ROM 704 includes PCI header data 726, 728, 730 and PCI
firmware images 732, 734, 736. The virtualized expansion
ROM image 706 includes PCI header data 738, 740, 742 and
PCI firmware images 744, 746, 748.

A PCIM may process data from the PCI firmware image
718 at block 750. For example, the PCIM may match the PCI
vendor ID of the physical function with the PCI SR-IOV
capability virtual function device ID value or other image ID
of the PCI firmware image 718. The PCIM may determine
that the architecture of the PCI firmware image 718 is sup-
ported by the virtualization intermediary. The PCIM may
modify the header data for the virtual function IDs and may
write the header data 738 to the virtualized expansion ROM
image 706. The PCIM may further write a copy of the PCI

10

15

20

25

30

35

40

45

50

55

60

65

22

firmware image 718 to the virtualized expansion ROM image
706 as the PCI firmware image 744.

The PCIM may additionally process data from the PCI
firmware image 720. The PCIM may determine at block 752
that the device ID of the physical function does not match the
PCI firmware image 720. The PCIM may consequently
ignore the PCI firmware image 720.

Similarly, the PCIM may determine at block 754 that the
PCI vendor 1D of the physical function associated with the
PCI firmware image 722 does not match the device ID value
of'the physical function. The PCIM may subsequently ignore
the PCI firmware image 722.

The PCIM may additionally process data from the PCI
firmware image 722. The PCIM may determine at block 756
that the architecture of the PCI firmware image 722 is unsup-
ported by the virtualization intermediary. The PCIM may
consequently ignore the PCI firmware image 722. Similarly,
the PCIM may determine at block 758 that the architecture of
the PCI firmware image 732 is unsupported by the virtualiza-
tion intermediary. The PCIM may subsequently ignore the
PCI firmware image 732.

The PCIM may process data from the PCI firmware image
734 at block 760. For instance, the PCIM may match the PCI
vendor ID of the physical function with the PCI SR-IOV
capability virtual function device ID value or other image ID
of the PCI firmware image 734. The PCIM may determine
that the architecture of the PCI firmware image 734 is sup-
ported by the virtualization intermediary. The PCIM may
modify the header data for the virtual function IDs and may
write the header data to the virtualized expansion ROM image
706. The PCIM may further write a copy of the PCI firmware
image 734 to the virtualized expansion ROM image 706 as the
PCI firmware image 746.

The PCIM may process data from the PCI firmware image
736 at block 762. For example, the PCIM may match the PCI
vendor ID of the physical function with the PCI SR-IOV
capability virtual function device ID value or other image ID
of the PCI firmware image 736. The PCIM may determine
that the architecture of the PCI firmware image 736 is sup-
ported by the virtualization intermediary. The PCIM may
modify the header data for the virtual function IDs and may
write the header data to the virtualized expansion ROM image
706. The PCIM may further write a copy of the PCI firmware
image 736 to the virtualized expansion ROM image 706 as the
PCI firmware image 748.

FIG. 7 thus shows an embodiment PCIM image virtualiza-
tion processing that selects and formats firmware image data
for a virtualized expansion ROM image 706. The virtualized
expansion ROM image 706 may be presented to a logical
partition to facilitate virtual function boot processes.

FIG. 8 is a block diagram illustrating a system 800 config-
ured to perform pass-through mapping of logical partition
address space into PCI system address space. More particu-
larly, the address space 804, 806, 808 of first, second, and
third logical partitions may be mapped into PCI system
address space 802. According to a particular embodiment,
logical partition configuration firmware may use a mapping
table to map the logical partition address space into PCI
system address space.

The first logical partition address space 804 may be a client
of a first physical function (PF0) and a first virtual function
(VF0). The second logical partition address space 804 may be
a client of a second physical function (PF1) and a second
virtual function (VF1). The third logical partition address
space 804 may be a client of the first physical function (PF0)
and the second virtual function (VF1), as well as of the second
physical function (PF1) and the first virtual function (VF0).

US 9,411,654 B2

23

The first logical partition address space 804 may include
virtual function BARO 810 and a virtual expansion ROM
BAR 812. The second logical partition address space 806 may
include virtual function BARO 814 and a virtual expansion
ROM BAR 816. The third logical partition address space 808
may include virtual function BARO 818 and a virtual expan-
sion ROM BAR 820, as well as virtual function BARO 822
and a virtual expansion ROMBAR 824.

PCI system address space 802 may include BARO 826,
BAR1 828, BAR2 830, and expansion ROM BAR 832, all
associated with a first physical function (PF0). BARO 834,
BAR1 836, BAR2 838, and expansion ROM BAR 840 of the
PCI system address space 802 are associated with a second
physical function (PF1). The PCI system address space 802
may further include virtual function zero (VF0) BARO 842
and VF1 BARO 844, both associated with the first physical
function. VF0 BARO 846 and VF1 BAR1 848 may both be
associated with the second physical function.

The virtual function BARO 810 may be mapped to the PF1
VF0 BARO 846, and the virtual function expansion ROM
BARO 812 may be mapped to the PF0 expansion ROM BARO0
832. The virtual function BARO 814 may be mapped to the
PF0 VF0 BARO 842, and the virtual expansion ROM BAR
816 may be mapped to the expansion ROM BAR 840 of the
second physical function. The virtual function BARO 818
may be mapped to the VF1 BARO 844, and the virtual expan-
sion ROM BAR 820 may be mapped to the expansion ROM
BAR 832. The virtual function BAR0 822 may be mapped to
the VF1 BAR1 848, and the virtual expansion ROMBAR 824
may be mapped to the expansion ROM BAR 840 of the
second physical function.

FIG. 9 is a flowchart of an embodiment of a method 900 of
a PCIM image virtualization process that maps or otherwise
translates a ROM image of a physical function of an I/O
adapter into a virtualized expansion ROM image. An embodi-
ment of the method 900 may be executed by a PCIM, or a
physical function manager, of a logically portioned comput-
ing system, such as the system 700 of FIG. 7.

Turning more particularly to the flowchart, a first physical
function of an adapter may be located at 902. A system of an
embodiment may determine at 904 whether a physical func-
tion supports SR-IOV. Where the physical function does not
support SR-IOV at 904, the system may determine at 906
whether another physical function is associated with the
adapter. Where there is not another physical function at 906,
a virtual expansion ROM image may be assembled and/or
copied at 908 from the PCIM to the virtualization intermedi-
ary. Where another physical function is alternatively located
at 906, a next physical function may be located at 902.

Where the physical function at 904 alternatively supports
SR-IOV, the PCI vendor ID value of the physical function
may be read at 910. The read PCI vendor ID value may be
used for the physical function’s virtual functions vendor ID.
At 912, the PCI SR-IOV capability virtual function device ID
value of the physical function may be read.

The system may determine at 914 whether a vendor spe-
cific sequence is useful or needed to retrieve a firmware
image(s) for the virtual functions of the physical function.
Where so, the vendor specific sequence may be used at 916 to
retrieve the firmware image(s) for the virtual functions of the
physical function. A PCI header may be created at 918 to
match the virtual function IDs and all possible virtual func-
tion classes. The firmware image with the header may be
added at 920 to the virtual expansion ROM image in memory,
and the system may attempt to locate another physical func-
tion at 906.

10

15

20

25

30

35

40

45

50

55

60

65

24

Where the a vendor specific sequence is not useful or
needed to retrieve the firmware image(s) at 914, the system
may determine at 922 whether the virtual functions of the
physical function use the firmware image(s) of the physical
function. The firmware images may be identified by the ven-
dor ID and/or device ID of the physical function. Where the
virtual functions use the firmware image(s) of the physical
function, the system at 924 may search for the device ID of the
physical function in the expansion ROM of the physical func-
tion. Where the virtual functions alternatively do not use the
firmware image(s) of the physical function at 922, the system
at 926 may search for the virtual function device ID. The
virtual function device ID may be determined from the PCI
SR-IOV capability in the expansion ROM of the physical
function.

At 928, the system may determine the size of the PCI
expansion ROM BAR of the physical function. The PCI
expansion ROM BAR of the physical function may be
mapped at 930 into PCI and processor address space. The first
firmware image, along with its associated PCI data structure
and header of the expansion ROM, may be located at 932.

The system may determine at 934 whether the located
device ID match the header data. The system may further
determine whether the architecture of the firmware image is
supported by the virtualization intermediary. Where the
device ID matches and the architecture is supported at 934, a
PCI header may be created at 936 to match the virtual func-
tion device IDs. A class type may be copied from the original
header. The firmware image may be added at 938 to the virtual
expansion ROM image in the memory.

The system at 940 may determine whether the last PCI
firmware image has been encountered. Where there is another
PCI firmware image at 940, the next firmware image of the
expansion ROM may be located at 942, along with its PCI
data structure and header. Otherwise, the system processes
may return at 906 to locate a next physical function.

FIG. 10 is a flowchart of another embodiment of a method
1,000 of a PCIM image virtualization process that maps or
otherwise translates a ROM image of a physical function ofan
1/O adapter into a virtualized expansion ROM image. At
1,002, the PCIM may configure the virtual function. The
PCIM may further propagate the configuration of the virtual
function to the virtualization intermediary. The virtualization
intermediary may place or otherwise transfer the virtual func-
tion configuration information at 1,004 into a structure for use
by the configuration firmware, or logical partition firmware.

The virtualization intermediary may indicate at 1,006 that
the virtual function may use a unique call to the virtualization
intermediary to read the expansion ROM of the device. The
virtualization intermediary may copy at 1,008 the structure to
the memory of the logical partition for the configuration
firmware. The virtualization intermediary may initiate at
1,010 the logical partition that owns the virtual function.

The configuration firmware may determine at 1,012 that it
may use the expansion ROM of the virtual function. The
configuration firmware may use at 1,014 the unique virtual-
ization intermediary call to read the expansion ROM for the
virtual function. In response, the virtualization intermediary
may locate at 1,016 the virtualized expansion ROM image for
the virtual function device and may return appropriate data.

FIG. 11 is a flowchart of another embodiment of a method
1,100 of a PCIM image virtualization to map a ROM image of
aphysical function of an I/O adapter into a virtualized expan-
sion ROM image. At 1,102, the PCIM may configure the
virtual function. The PCIM may further propagate the con-
figuration of the virtual function to the virtualization interme-
diary. The virtualization intermediary may place or otherwise

US 9,411,654 B2

25

transfer the virtual function configuration information at
1,104 into a structure for use by the configuration firmware, or
logical partition firmware.

The virtualization intermediary may create at 1,106 a
unique address for the virtual expansion ROM image. The
logical partition may use the virtual expansion ROM image
for memory mapping. The virtualization intermediary may
copy at 1,108 the structure to the memory of the logical
partition for the configuration firmware. The virtualization
intermediary may initiate at 1,110 the logical partition that
owns the virtual function.

The configuration firmware may determine at 1,112 that it
may use the expansion ROM of the virtual function. The
configuration firmware may call the virtualization intermedi-
ary at 1,114 to map the firmware image address. In response,
the virtualization intermediary may map at 1,016 the input
address from the logical partition/configuration firmware to
the firmware image in the virtualization intermediary
memory. The configuration firmware may read the virtual
expansion ROM image at 1,118 directly using address map-
ping to the virtualization intermediary memory.

FIG. 12 is a flowchart of another embodiment of a method
1,200 of a PCIM image virtualization to map a ROM image of
aphysical function of an I/O adapter into a virtualized expan-
sion ROM image. At 1,202, the PCIM may configure the
virtual function. The PCIM may further propagate the con-
figuration of the virtual function to the virtualization interme-
diary. The virtualization intermediary may place or otherwise
transfer the virtual function configuration information at
1,204 into a structure for use by the configuration firmware, or
logical partition firmware.

The virtualization intermediary may create at 1,206 a
unique address for the virtual expansion ROM image. The
logical partition may use the virtual expansion ROM image
for memory mapping. The virtualization intermediary may
copy at 1,208 the structure to the memory of the logical
partition for the configuration firmware. The virtualization
intermediary may initiate at 1,210 the logical partition that
owns the virtual function.

The configuration firmware may determine at 1,212 that it
may use the expansion ROM of the virtual function. The
configuration firmware may read at 1,214 the expansion
ROM BAR. The virtualization intermediary may intercept the
expansion ROM BAR and may return the unique address (i.e.,
created at 1,206).

At 1,216, the configuration firmware may use a virtualiza-
tion intermediary call to read from the unique I/O address.
The virtualization intermediary may intercept the address at
1,218 and may return appropriate data from the virtual expan-
sion ROM image in the virtualization intermediary memory.

FIG. 13 is a flowchart of another embodiment of a method
1,300 of a PCIM image virtualization to map a ROM image of
aphysical function of an I/O adapter into a virtualized expan-
sion ROM image. At 1,302, the PCIM may configure the
virtual function. The PCIM may further propagate the con-
figuration of the virtual function to the virtualization interme-
diary. The virtualization intermediary may place or otherwise
transfer the virtual function configuration information at
1,304 into a structure for use by the configuration firmware, or
logical partition firmware.

The virtualization intermediary may create at 1,306 a
unique address for the virtual expansion ROM image. The
logical partition may use the virtual expansion ROM image
for memory mapping. The virtualization intermediary may
copy at 1,308 the structure to the memory of the logical

10

15

20

25

30

35

40

45

50

55

60

65

26

partition for the configuration firmware. The virtualization
intermediary may initiate at 1,310 the logical partition that
owns the virtual function.

The configuration firmware may determine at 1,312 that it
may use the expansion ROM of the virtual function. The
configuration firmware may read at 1,314 the expansion
ROM BAR. The virtualization intermediary may intercept the
expansion ROM BAR and may return the unique 1/0 address
(i.e., created at 1,306).

At 1,316, the configuration firmware may use a virtualiza-
tion intermediary call to map the expansion ROM BAR
address to the logical partition address. The virtualization
intermediary may intercept mapping call with the ROM BAR
address at 1,318. The virtualization intermediary may further
map the logical partition address to image in the virtual
expansion ROM image in the virtualization intermediary
memory.

FIG. 14 is a flowchart of an embodiment of a method 1,400
of'a PCIM image virtualization process that maps or other-
wise translates a ROM image of a physical function of an I/O
adapter into a virtualized expansion ROM image. An embodi-
ment of the method 1,400 may be executed as a pass-through
operation by a PCIM, or a physical function manager, of a
logically portioned computing system, such as the system 800
of FIG. 8.

Turning more particularly to the flowchart, the PCIM may
allocate memory structures at 1,402. The memory structures
may be useful to hold a firmware image(s). A first physical
function may be located at 1,404. The PCIM may determine
at 1,406 whether a located physical function supports SR-
IOV. Where the physical function does not support SR-IOV,
the PCIM may attempt to locate another physical function at
1,404. Where another physical function cannot be located, the
method 1,400 may end at 1,414.

Where the physical function alternatively does support
SR-IOV at 1,406, the PCIM may read at 1,410 the expansion
ROM of'the physical function size and may map the BAR into
the PCI address space. The PCI address and the size of the
expansion ROM of the physical function may be copied to the
virtualization intermediary at 1,412. The system may deter-
mine at 1,408 whether there is another physical function.

FIG. 15 is a flowchart of an embodiment of a method 1,500
of a PCIM image virtualization to map a ROM image of a
physical function of an I/O adapter into a virtualized expan-
sion ROM image. At 1,502, the PCIM may configure the
virtual function. The PCIM may further propagate the con-
figuration of the virtual function to the virtualization interme-
diary. The virtualization intermediary may place or otherwise
transfer the virtual function configuration information at
1,504 into a structure for use by the configuration firmware, or
logical partition firmware.

The virtualization intermediary may input at 1,506 a
matching physical function expansion ROM size of the vir-
tual function (e.g., from the PCIM) to a structure, along with
the virtual function configuration information. The virtual-
ization intermediary may copy at 1,508 the structure to the
memory of the logical partition for the configuration firm-
ware. The virtualization intermediary may initiate at 1,510
the logical partition that owns the virtual function.

The configuration firmware may determine at 1,512 that it
may use the expansion ROM of the virtual function. The
configuration firmware may retrieve at 1,514 the expansion
ROM BAR address of the virtual function. The configuration
firmware may retrieve the address information from the data
structure provided by the virtualization intermediary.

At 1,516, the configuration firmware may use a virtualiza-
tion intermediary call to read the expansion ROM BAR

US 9,411,654 B2

27

address. The physical function (e.g., in the adapter) may
respond at 1,518 to the read(s) with data from the expansion
ROM of the physical function.

FIG. 16 is a flowchart of another embodiment of a method
1,600 of a PCIM image virtualization to map a ROM image of
aphysical function of an I/O adapter into a virtualized expan-
sion ROM image. At 1,602, the PCIM may configure the
virtual function and may further propagate the configuration
of' the virtual function to the virtualization intermediary. The
virtualization intermediary may place or otherwise transfer
the virtual function configuration information at 1,604 into a
structure for use by the configuration firmware, or logical
partition firmware.

The virtualization intermediary may input at 1,606 a size of
the physical function expansion ROM of the virtual function
into the data structure, along with the virtual function con-
figuration information. The virtualization intermediary may
copy at 1,608 the structure to the memory of the logical
partition for the configuration firmware. The virtualization
intermediary may initiate at 1,610 the logical partition that
owns the virtual function.

The configuration firmware may determine at 1,612 that it
may use the expansion ROM of the virtual function. The
configuration firmware may read at 1,614 the address from
the expansion ROM BAR. The configuration firmware may
additionally read or otherwise retrieve the size data from the
virtual function configuration information structure. The
structure may be stored at the virtualization intermediary.

At 1,616, the configuration firmware may use a virtualiza-
tion intermediary call to map the expansion ROM BAR
address to the logical partition address. The configuration
firmware may read at 1,618 from the region mapped with the
expansion ROM BAR address.

Particular embodiments described herein may take the
form of an entirely hardware embodiment, an entirely soft-
ware embodiment or an embodiment containing both hard-
ware and software elements. In a particular embodiment, the
disclosed methods are implemented in software that is
embedded in processor readable storage medium and
executed by a processor, which includes but is not limited to
firmware, resident software, microcode, etc.

Further, embodiments of the present disclosure, such as the
one or more embodiments may take the form of a computer
program product accessible from a computer-usable or com-
puter-readable storage medium providing program code for
use by or in connection with a computer or any instruction
execution system. For the purposes of this description, a
computer-usable or computer-readable storage medium may
be any apparatus that may tangibly embody a computer pro-
gram and that may contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device.

In various embodiments, the medium may include an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system (or apparatus or device) or a propagation
medium. Examples of a computer-readable storage medium
include a semiconductor or solid state memory, magnetic
tape, a removable computer diskette, a random access
memory (RAM), a read-only memory (ROM), a rigid mag-
netic disk and an optical disk. Current examples of optical
disks include compact disk—read-only memory (CD-ROM),
compact disk—read/write (CD-R/W) and digital versatile
disk (DVD).

A data processing system suitable for storing and/or
executing program code may include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements may include local memory

20

25

30

40

45

65

28

employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) may be coupled to
the data processing system either directly or through inter-
vening /O controllers. Network adapters may also be
coupled to the data processing system to enable the data
processing system to become coupled to other data process-
ing systems or remote printers or storage devices through
intervening private or public networks. Modems, cable
modems, and Ethernet cards are just a few of the currently
available types of network adapters.

The previous description of the disclosed embodiments is
provided to enable any person skilled in the art to make or use
the disclosed embodiments. Use of the terms Peripheral Com-
ponent Interconnect Express (PCle) and Peripheral Compo-
nent Interconnect (PCI) may be used interchangeably in some
instances. Moreover, the terms operating system and logical
partition may be used interchangeably in certain of the
embodiments described herein. Various modifications to
these embodiments, including embodiments of /O adapters
virtualized in multi-root input/output virtualization (MR-
IOV) embodiments, or virtualized using software virtualiza-
tion intermediaries, will be readily apparent to those skilled in
the art, and the generic principles defined herein may be
applied to other embodiments without departing from the
scope of the disclosure. Thus, the present disclosure is not
intended to be limited to the embodiments shown herein but is
to be accorded the widest scope possible consistent with the
principles and features as defined by the following claims.

What is claimed is:
1. A method of managing an adapter in a data processing
system, the method comprising:
reading at least one firmware image of a physical function
stored in an expansion read-only memory (ROM) of the
adapter, wherein the adapter is single root input/output
virtualization (SR-IOV) capable;
determining that the at least one firmware image corre-
sponds to a virtual function that is associated with a
virtual function identifier (ID) and the adapter;
creating a virtualized expansion ROM image correspond-
ing to the expansion ROM in the adapter using the at
least one firmware image;
using a virtualization intermediary to enable access to the
virtualized expansion ROM image by a logical partition
of the data processing system;
reading vendor identification data of a second physical
function stored in the expansion ROM of the adapter;
determining whether the vendor identification data is used
to retrieve a second firmware image of the second physi-
cal function;
in response to determining that the vendor identification
data is not used, determining whether a second virtual
function of the second physical function uses the second
firmware image; and
in response to determining that the second firmware image
is not used, searching for a second virtual ID associated
with the second virtual function in the expansion ROM
of the adapter.
2. The method of claim 1, further comprising providing at
least one of a size or an address associated with the at least one
firmware image to the logical partition.

US 9,411,654 B2

29

3. The method of claim 2, further comprising mapping the
address ofthe at least one firmware image into memory space
of the logical partition.

4. The method of claim 1, further comprising determining
that a virtualization intermediary call is to be generated based
on the virtualization intermediary enabling access to the vir-
tualized expansion ROM image.

5. The method of claim 4, further comprising generating
the virtualization intermediary call to enable the logical par-
tition to read the at least one firmware image.

6. The method of claim 4, wherein the virtualization inter-
mediary call enables the logical partition to determine a size
of'the at least one firmware image without using an address of
the at least one firmware image.

7. The method of claim 1, further comprising creating a
first memory-mapped input/output (MMIO) region corre-
sponding to the expansion ROM and creating a second
MMIO region corresponding to the virtualized expansion
ROM image.

8. The method of claim 1, further comprising associating a
port of the adapter with the virtualized expansion ROM
image.

9. The method of claim 8, further comprising filtering out
a portion of the at least one firmware image.

10. The method of claim 1, further comprising locating the
physical function associated with the adapter.

11. The method of claim 10, further comprising determin-
ing whether the physical function is single root input/output
virtualization (SR-IOV) capable.

12. The method of claim 1, further comprising allocating
memory to store the virtualized expansion ROM image.

13. The method of claim 1, further comprising copying the
atleast one firmware image from a physical function manager
to the virtualization intermediary.

14. The method of claim 1, wherein the virtual function
associated with the adapter includes a boot operation.

15. An apparatus, comprising:

an adapter;

a processor;

amemory storing program code, the program code execut-

able by the processor to:

read at least one firmware image of a physical function
stored in an expansion read-only memory (ROM) of
the adapter, wherein the adapter is single root input/
output virtualization (SR-IOV) capable;

determine that the at least one firmware image corre-
sponds to a virtual function that is associated with a
virtual function identifier (ID) and the adapter;

create a virtualized expansion ROM image correspond-
ing to the expansion ROM in the adapter using the at
least one firmware image;

using a virtualization intermediary to enable access to
the virtualized expansion ROM image by a logical
partition;

reading vendor identification data of a second physical
function stored in the expansion ROM of the adapter;

determining whether the vendor identification data is
used to retrieve a second firmware image of the sec-
ond physical function;

in response to determining that the vendor identification
data is not used, determining whether a second virtual
function of the second physical function uses the sec-
ond firmware image; and

5

10

15

20

25

30

35

40

45

50

55

60

30

in response to determining that the second firmware
image is not used, searching for a second virtual ID
associated with the second virtual function in the
expansion ROM of the adapter.

16. The apparatus of claim 15, wherein the virtual function
is assigned to an operating system image of a plurality of
operating system images.

17. The apparatus of claim 15, wherein the program code is
executable to provide at least one of a size or an address
associated with the at least one firmware image to the logical
partition.

18. A computer program product of a data processing sys-
tem comprising:

a computer usable storage device storing computer usable

program code executable by a processor to:

read at least one firmware image of a physical function
that is stored in an expansion read-only memory
(ROM) of an adapter, wherein the adapter is single
root input/output virtualization (SR-IOV) capable;

determine that the at least one firmware image corre-
sponds to a virtual function that is associated with a
virtual function identifier (ID) and the adapter;

create a virtualized expansion ROM image correspond-
ing to the expansion ROM in the adapter using the at
least one firmware image;

use a virtualization intermediary of the data processing
system to enable access to the virtualized expansion
ROM image by a logical partition;

storing the virtualized expansion ROM image in the
virtualization intermediary;

generating a header corresponding to the virtual func-
tion ID;

storing the header and the at least one firmware image in
connection with the virtualized expansion ROM
image;

accessing the at least one firmware image via the virtu-
alization intermediary;

reading a second firmware image of a second physical
function stored in the expansion ROM of the adapter;

determining that the second firmware image corre-
sponds to a second virtual function associated with
the adapter;

generating a second header corresponding to a second
virtual function ID that is associated with the second
virtual function; and

storing the second header and the second firmware
image in connection with the virtualized expansion
ROM image to enable access to the second virtual
function by a second logical partition.

19. The method of claim 1, wherein a first number of
firmware images associated with the virtualized expansion
ROM image is less than a second number of firmware images
associated with the expansion ROM.

20. The apparatus of claim 15, wherein the program code is
executable to allocate memory to store the virtualized expan-
sion ROM image.

21. The apparatus of claim 15, wherein the program code is
executable to copy the at least one firmware image from a
physical function manager to the virtualization intermediary.

22. The apparatus of claim 15, wherein the program code is
executable to associate a port of the adapter with the virtual-
ized expansion ROM image.

#* #* #* #* #*

